Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/52866
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGurbuz, E.-
dc.contributor.authorTurgut, O.-
dc.contributor.authorKok, I.-
dc.date.accessioned2023-10-27T07:08:35Z-
dc.date.available2023-10-27T07:08:35Z-
dc.date.issued2023-
dc.identifier.isbn9798350302523-
dc.identifier.urihttps://doi.org/10.1109/SmartNets58706.2023.10215896-
dc.identifier.urihttps://hdl.handle.net/11499/52866-
dc.descriptionAselsan;CIS ARGE;Yeditepe Universityen_US
dc.description2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023 - 25 July 2023 through 27 July 2023 -- 191902en_US
dc.description.abstractIn recent years, there has been a surge in IoT healthcare applications, ranging from wearable health monitors and remote patient monitoring systems to smart medical devices, telemedicine platforms, and personalized health tracking and management tools. The purpose of these applications is to improve treatment outcomes, streamline healthcare delivery, and enable data-driven decision-making. However, due to the sensitive nature of health data and the critical role that these applications play in people's lives, ensuring their security and privacy has become a paramount concern. To address this issue, we developed an explainable malicious traffic detection and monitoring system based on Machine Learning (ML) and Deep Learning (DL) models. The proposed system involves the use of Explainable Artificial Intelligence (XAI) methods such as LIME, SHAP, ELI5, and Integrated Gradients(IG) to ensure the interpretability and explainability of the developed models. Finally, we demonstrate the high accuracy of the developed models in detecting attacks on the intensive care patient dataset. Furthermore, we ensure the transparency and interpretability of the model outcomes by presenting them through the Shapash Monitor interface, which can be easily accessed by both experts and non-experts. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExplainable Artificial Intelligence(XAI)en_US
dc.subjectHealthcare securityen_US
dc.subjectInternet of Thingsen_US
dc.subjectInterpretable Machine Learning (IML)en_US
dc.subjectintrusion detectionen_US
dc.subjectBehavioral researchen_US
dc.subjectDecision makingen_US
dc.subjectDeep learningen_US
dc.subjectHealth careen_US
dc.subjectIntrusion detectionen_US
dc.subjectLearning systemsen_US
dc.subjectLimeen_US
dc.subjectRemote patient monitoringen_US
dc.subjectSensitive dataen_US
dc.subjectDeveloped modelen_US
dc.subjectExplainable artificial intelligence(XAI)en_US
dc.subjectHealthcare securityen_US
dc.subjectInterpretabilityen_US
dc.subjectInterpretable machine learningen_US
dc.subjectIntrusion-Detectionen_US
dc.subjectMachine-learningen_US
dc.subjectMalicious trafficen_US
dc.subjectTraffic detection systemsen_US
dc.subjectTraffic monitoring systemsen_US
dc.subjectInternet of thingsen_US
dc.titleExplainable AI-Based Malicious Traffic Detection and Monitoring System in Next-Gen IoT Healthcareen_US
dc.typeConference Objecten_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/SmartNets58706.2023.10215896-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid58572504700-
dc.authorscopusid58572456300-
dc.authorscopusid57200283688-
dc.identifier.scopus2-s2.0-85170638209en_US
dc.institutionauthor-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

Page view(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.