Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/54805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMutlu Öztürk, Hande-
dc.contributor.authorGüler, Özgür-
dc.contributor.authorPolat, Olcay-
dc.date.accessioned2023-11-18T09:29:22Z-
dc.date.available2023-11-18T09:29:22Z-
dc.date.issued2023-
dc.identifier.isbn9781668469873-
dc.identifier.isbn9781668469859-
dc.identifier.urihttps://doi.org/10.4018/978-1-6684-6985-9.ch004-
dc.identifier.urihttps://hdl.handle.net/11499/54805-
dc.description.abstractThe main focus of this chapter is to examine the tourism income of Türkiye as a case country, taking into account the structure of the tourism industry and relevant economic and social indicators. Statistical methods are used to investigate the factors that influence tourism income and to demonstrate the impact of these variables. The chapter aims to identify the key factors that should be considered when planning tourism-related activities and to explore the suitability of different models for future predictions. In addition, the chapter explores the use of machine learning models, such as artificial neural networks (ANN) and gradient boosted regression trees (GBRT), to compare their performance with the established multiple linear regression model. Furthermore, the chapter adds to the existing literature on tourism economics and forecasting methods by examining the performance of different models in predicting tourism income and highlighting the importance of factors such as the country's image, safety, and transportation opportunities in shaping tourism income in Türkiye. © 2023 by IGI Global. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherIGI Globalen_US
dc.relation.ispartofHandbook of Research on Innovation, Differentiation, and New Technologies in Tourism, Hotels, and Food Serviceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDetermination and evaluation of parameters affecting tourism revenue by machine learning methodsen_US
dc.typeBook Parten_US
dc.identifier.startpage70en_US
dc.identifier.endpage97en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.4018/978-1-6684-6985-9.ch004-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.authorscopusid55394036900-
dc.authorscopusid58629011800-
dc.authorscopusid54411047300-
dc.identifier.scopus2-s2.0-85173019635en_US
dc.institutionauthor-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeBook Part-
item.cerifentitytypePublications-
crisitem.author.dept21.01. Gastronomy and Culinary Arts-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Turizm Fakültesi Koleksiyonu
Show simple item record



CORE Recommender

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.