Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/54832
Title: | Adaptation of sea turtles to climate warming: Will phenological responses be sufficient to counteract changes in reproductive output? | Authors: | Fuentes, M.M.P.B. Santos, A.J.B. Abreu-Grobois, A. Briseño-Dueñas, R. Al-Khayat, J. Hamza, S. Saliba, S. Anderson D. Rusenko K.W. Mitchell N.J. Gammon M. Bentley B.P. Beton D. Booth D.T.B. Broderick A.C. Colman L.P. Snape R.T.E. Calderon-Campuzano M.F. Cuevas E. Lopez-Castro M.C. Flores-Aguirre C.D. Mendez de la Cruz F. Segura-Garcia Y. Ruiz-Garcia A. Fossette S. Gatto C.R. Reina R.D. Girondot M. Godfrey M. Guzman-Hernandez V. Hart C.E. Kaska Y. Lara P.H. Marcovaldi M.A.G.D. LeBlanc A.M. Rostal D. Liles M.J. Wyneken J. Lolavar A. Williamson S.A. Manoharakrishnan M. Pusapati C. Chatting M. Mohd Salleh S. Patricio A.R. Regalla A. Restrepo J. Garcia R. Santidrián Tomillo P. Sezgin C. Shanker K. Tapilatu F. Turkozan O. Valverde R.A. Williams K. Yilmaz C. Tolen N. Nel R. Tucek J. Legouvello D. Rivas M.L. Gaspar C. Touron M. Genet Q. Salmon M. Araujo M.R. Freire J.B. Castheloge V.D. Ferreira P.D. Paladino F.V. Montero-Flores D. Sozbilen D. Monsinjon J.R. |
Keywords: | adaptive response climate change ectotherms marine turtles phenology reproductive output sea turtles |
Publisher: | John Wiley and Sons Inc | Abstract: | Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a “middle of the road” scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26–43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from −20 to −191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming. © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. | URI: | https://doi.org/10.1111/gcb.16991 https://hdl.handle.net/11499/54832 |
ISSN: | 1354-1013 |
Appears in Collections: | Acıpayam Meslek Yüksekokulu Koleksiyonu Fen Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
11
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
10
checked on Nov 16, 2024
Page view(s)
44
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.