Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/54962
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDikbaş, Fatih-
dc.contributor.authorKoç, Orhan-
dc.date.accessioned2023-11-18T09:57:44Z-
dc.date.available2023-11-18T09:57:44Z-
dc.date.issued2023-
dc.identifier.issn1302-7212-
dc.identifier.issn1305-2128-
dc.identifier.urihttps://doi.org/10.26650/JGEOG2023-1165191-
dc.identifier.urihttps://hdl.handle.net/11499/54962-
dc.description.abstractGlobal warming is increasing the amount of atmospheric water and the magnitude of precipitation in some regions even though the annual total precipitation trend is decreasing. Consequently, the prediction of future maximum precipitation based on existing observations has gained importance. Understanding the expected variability in precipitation events and predicting the location and yearly periods of probable extreme precipitation are important for the efficient prevention of potential natural catastrophes like floods and dam failures. In this study, future extreme precipitation was predicted for each month of year at a 95% confidence level by using the precipitation data of 66 stations in Turkey. In the context of the developed method, the observed precipitations of each station for each month are sorted in ascending order and the best polynomial fitting to the data is determined, then the expected extreme precipitation values higher than all previous observations were determined by extrapolation. The results of the software developed for predicting the expected maximum precipitation values by determining the degrees and coefficients of the best-fitting polynomials for each month at each station show the months and regions with extreme precipitation and risks of flooding. Also, maps showing the predicted monthly extreme precipitation events throughout Turkey are generated for each month. The PolReg software developed as part of the study is freely presented together with the manuscript for readers' use.en_US
dc.language.isotren_US
dc.publisherIstanbul Univ, Fac Letters, Dept Geographyen_US
dc.relation.ispartofJournal of Geography-Cografya Dergisien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPolynomial Regressionen_US
dc.subjectMonthly Total Precipitationen_US
dc.subjectMaximum Precipitationen_US
dc.subjectRainfallen_US
dc.subjectTemperatureen_US
dc.subjectThresholden_US
dc.subjectChaosen_US
dc.titlePrediction of Maximum Precipitation in Turkey with Polynomial Regressionen_US
dc.typeArticleen_US
dc.identifier.issue46en_US
dc.identifier.startpage53en_US
dc.identifier.endpage65en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.26650/JGEOG2023-1165191-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:001076882900005en_US
dc.institutionauthor-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.grantfulltextnone-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.