Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/56532
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gençyiğit, M. | - |
dc.contributor.author | Şenol, M. | - |
dc.contributor.author | Kurt, A. | - |
dc.contributor.author | Tasbozan, O. | - |
dc.date.accessioned | 2024-01-30T14:31:11Z | - |
dc.date.available | 2024-01-30T14:31:11Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0219-8878 | - |
dc.identifier.uri | https://doi.org/10.1142/S0219887824500816 | - |
dc.identifier.uri | https://hdl.handle.net/11499/56532 | - |
dc.description.abstract | This paper addresses the new (3 +1)-dimensional Mikhailov-Novikov-Wang (MNW) equation with arbitrary order derivative and presents novel exact solutions of it by implementing exp(−ϕ(ξ))-expansion, modified Kudryashov, generalized (G'/G)-expansion, and modified extended tanh-function methods. This equation emphasizes significant connection between the integrability and water waves' phenomena. Employing the conformable derivative definition, a variety of soliton (bright, dark, anti-kink) solutions of the model are obtained. Therefore, it would appear that these approaches might yield noteworthy results in producing the exact solutions to the fractional differential equations in a wide range. In addition, 2D, 3D, and contour plots of the solutions are drawn for specific values to demonstrate the physical behaviors of the solutions. © 2023 World Scientific Publishing Co. Pte Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific | en_US |
dc.relation.ispartof | International Journal of Geometric Methods in Modern Physics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | conformable derivative | en_US |
dc.subject | exp(−ϕ(ξ))-expansion method | en_US |
dc.subject | fractional (3 +1)-dimensional Mikhailov-Novikov-Wang equation | en_US |
dc.subject | generalized (G'/G)-expansion method | en_US |
dc.subject | modified extended tanh-function method | en_US |
dc.subject | Modified Kudryashov method | en_US |
dc.title | Novel solitary wave solutions to the fractional new (3 +1)-dimensional Mikhailov-Novikov-Wang equation | en_US |
dc.type | Article | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.1142/S0219887824500816 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 58172799800 | - |
dc.authorscopusid | 55757060900 | - |
dc.authorscopusid | 56513462000 | - |
dc.authorscopusid | 36905749100 | - |
dc.identifier.scopus | 2-s2.0-85180307751 | en_US |
dc.identifier.wos | WOS:001126184700001 | en_US |
dc.institutionauthor | … | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 16, 2024
Page view(s)
62
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.