Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKök, I.-
dc.contributor.authorErgun, Y.-
dc.contributor.authorUğur, N.-
dc.date.accessioned2024-01-30T14:31:13Z-
dc.date.available2024-01-30T14:31:13Z-
dc.date.issued2023-
dc.identifier.issn2732-4494-
dc.identifier.urihttps://doi.org/10.1049/icp.2023.1747-
dc.identifier.urihttps://hdl.handle.net/11499/56542-
dc.description2023 Low-Cost Digital Solutions for Industrial Automation, LoDiSA 2023 -- 25 September 2023 through 26 September 2023 -- 194731en_US
dc.description.abstractToday, climate change and global warming are among the most serious problems of humanity. In combating these problems, urgent and serious actions are needed especially in energy preferences, utilization, and management. Especially in the building sector, energy consumption has increased rapidly and today it has reached 40% of total global energy consumption. Therefore, the use of low-cost, eco-friendly, and sustainable green technologies is critical to mitigate the negative environmental impacts of carbon emissions and the depletion of the world's energy resources. In this context, emerging technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), and edge computing are both necessary and promising in terms of ensuring energy efficiency in buildings, grid security, and supply-demand balance. In this paper, we propose a low-cost end-to-end IoT system architecture for energy monitoring and management in smart buildings. In this architecture, we develop explainable ML models that predict building energy consumption based on edge computing. We also develop a mobile application with video call and instant messaging features for monitoring and managing energy consumption for expert users. Experimental and test results show that the proposed system can be used in building energy management in a fast, effective and interpretable way with the support of AI and IoT. With the developed prototype architecture, we present a future projection that the energy management of buildings in Green IoT can be low-cost, transparent, and understandable. © 2023 IET Conference Proceedings. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitution of Engineering and Technologyen_US
dc.relation.ispartofIET Conference Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBuilding Energy Managementen_US
dc.subjectEdge Computingen_US
dc.subjectExplainable Artificial Intelligence (XAI)en_US
dc.subjectGreen Internet of Thingsen_US
dc.subjectArchitectureen_US
dc.subjectArtificial intelligenceen_US
dc.subjectComputer architectureen_US
dc.subjectCostsen_US
dc.subjectEdge computingen_US
dc.subjectEnergy efficiencyen_US
dc.subjectEnergy managementen_US
dc.subjectEnergy utilizationen_US
dc.subjectEnvironmental impacten_US
dc.subjectGlobal warmingen_US
dc.subjectGreen computingen_US
dc.subjectBuilding energy managementsen_US
dc.subjectBuildings sectoren_US
dc.subjectComputing solutionsen_US
dc.subjectEdge computingen_US
dc.subjectEnergyen_US
dc.subjectEnergy-consumptionen_US
dc.subjectExplainable artificial intelligence (XAI)en_US
dc.subjectGreen internet of thingen_US
dc.subjectGreen internetsen_US
dc.subjectLow-costsen_US
dc.subjectInternet of thingsen_US
dc.titleExplainable AI-powered Edge Computing Solution for Smart Building Energy Management in Green IoTen_US
dc.typeConference Objecten_US
dc.identifier.volume2023en_US
dc.identifier.issue16en_US
dc.identifier.startpage150en_US
dc.identifier.endpage157en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1049/icp.2023.1747-
dc.authorscopusid57200283688-
dc.authorscopusid58746089500-
dc.authorscopusid58745468700-
dc.identifier.scopus2-s2.0-85178622373en_US
dc.institutionauthor-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.