Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56642
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFiliz, Alien_US
dc.contributor.authorDemirbilek, Fidanen_US
dc.date.accessioned2024-02-14T11:51:52Z-
dc.date.available2024-02-14T11:51:52Z-
dc.date.issued2024en_US
dc.identifier.urihttps://hdl.handle.net/11499/56642-
dc.description.abstractYapmış olduğumuz bu calışma beş ana bolumden oluşmaktadır. İlk bolumde lineer olayan Volterra integro diferansiyel denklemlerle ilgili literatur bilgisi ve yapılan calışmanın amacı verilmiŞtir. İkinci bolumde integral denklemler tanımı ve ceşitleri verilmiş, Volterra integral tipindeki denklemlerin kullanım alanları ve cozumunun varlığı uzerinde durulmuştur. Ucuncu bolumde, Volterra integral denklmeleri icin numerik yontemler verilmiş, bu yontemler orneklere uygulanarak numerik cozum tabloları elde edilmiştir. Dorduncu bolumde ise lineer olmayan Volterra-integro diferansiyel denklemlere geciş yapılarak, bu denklem ceşsitleri uzerinde durulmuş ve numerik metodlar uygulanarak grafikler e lde e dilmiştir. S on bölümde i se lineer olmayan integro diferansiyel denklemlere Euler metodundan balayarak Runge-Kutta-6 metoduna kadar bircok numerik yontem uygulanmış, uygun bilgisayar programları kullanılarak yuksek mertebeden yakınsak düzgün grafikler elde edilmiştir.en_US
dc.description.abstractThis study consists of five main s ections. In the first section, the literature on nonlinear Volterra integro differential equations and the aim of the study are given. In the second section, the definition and types of integral equations are given, the usage areas of Volterra integral type equations and the existence of solutions are emphasised. In the third section, numerical methods for Volterra integral equations are given and numerical solution tables are obtained by applying these methods to examples. In the fourth chapter, nonlinear Volterra-integro differential equations are discussed and numerical methods are applied to these equations and graphs are obtained. In the last section, numerical methods ranging from Euler’s method to Runge-Kutta-6 method are applied to nonlinear integro differential equations and high order convergent smooth graphs are obtained by using appropriate computer programmes.en_US
dc.language.isotren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectButcher tablosuen_US
dc.subjectlineer olmayan Volterra integral denklemleren_US
dc.subjectnümerik çözümleren_US
dc.subjectButcher tableen_US
dc.subjectnonlinear Volterra integral equationsen_US
dc.subjectnumerical solutionsen_US
dc.titleLineer olmayan volterra integro diferansiyel denklemlerin numerik çözümlerien_US
dc.title.alternativeNumerical solutions of nonlinear volterra integral differential equatien_US
dc.typeMaster Thesisen_US
dc.departmentPAÜ, Enstitüler, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.contributor.affiliation#Pamukkale Üniversitesi#en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1tr-
item.grantfulltextopen-
item.openairetypeMaster Thesis-
Appears in Collections:Tez Koleksiyonu
Files in This Item:
File Description SizeFormat 
10504657.pdf609.91 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

94
checked on Aug 24, 2024

Download(s)

88
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.