Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCabuk, U.C.-
dc.contributor.authorTosun, M.-
dc.contributor.authorDagdeviren, O.-
dc.contributor.authorOzturk, Yusuf-
dc.date.accessioned2024-02-24T14:32:20Z-
dc.date.available2024-02-24T14:32:20Z-
dc.date.issued2024-
dc.identifier.issn1524-9050-
dc.identifier.urihttps://doi.org/10.1109/TITS.2024.3350042-
dc.identifier.urihttps://hdl.handle.net/11499/56725-
dc.description.abstractDrones, particularly when deployed in swarms, hold immense potential for various applications, such as aerial imaging, delivery services, disaster response, and advanced surveillance. Their effective and efficient use, however, hinges on the accurate estimation of energy consumption. This study focuses on determining energy consumption patterns for small drones weighing less than 2 kg and with diameters under 1 m. Through an extensive series of test flights, empirical energy consumption data was collected and used to develop four distinct energy models: a theoretical model based on fundamental flight forces, a simple linear regression model, a cubic polynomial regression model, and a machine learning-based model using the XGBoost Regressor algorithm. A cost function for swarm topology control was also derived for assessing energy consumption during various activities, like connectivity restoration and formation change, facilitating more energy-efficient decision-making in swarm operations. Our findings highlighted an energy-efficient “valley” within the airspeed range, indicating that flying at speeds outside this range results in higher energy consumption. The machine learning model demonstrated superior accuracy within its training range, achieving an R<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula> of 0.9999, whereas the polynomial regression model was deemed best for extrapolation purposes, delivering an R<inline-formula> <tex-math notation="LaTeX">$^2$</tex-math> </inline-formula> of 0.966. Simple linear regression and theoretical models, although less accurate, can offer quick energy demand calculations and insights into the effects of hardware modifications, respectively. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Intelligent Transportation Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAtmospheric modelingen_US
dc.subjectCost functionen_US
dc.subjectData modelsen_US
dc.subjectDroneen_US
dc.subjectDronesen_US
dc.subjectEnergy consumptionen_US
dc.subjectenergy modelen_US
dc.subjectmachine learningen_US
dc.subjectPayloadsen_US
dc.subjectregressionen_US
dc.subjectswarmen_US
dc.subjectTopologyen_US
dc.subjectUAVen_US
dc.subjectXGBoosten_US
dc.subjectCost functionsen_US
dc.subjectDecision makingen_US
dc.subjectDronesen_US
dc.subjectEnergy efficiencyen_US
dc.subjectEnergy utilizationen_US
dc.subjectLatexesen_US
dc.subjectLearning systemsen_US
dc.subjectLinear regressionen_US
dc.subjectSwarm intelligenceen_US
dc.subjectTopologyen_US
dc.subjectAtmospheric modelingen_US
dc.subjectCost-functionen_US
dc.subjectEnergy modelen_US
dc.subjectEnergy-consumptionen_US
dc.subjectMachine-learningen_US
dc.subjectPayloaden_US
dc.subjectRegressionen_US
dc.subjectSwarmen_US
dc.subjectTheoretical modelingen_US
dc.subjectXgboosten_US
dc.subjectAntennasen_US
dc.titleModeling Energy Consumption of Small Drones for Swarm Missionsen_US
dc.typeArticleen_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/TITS.2024.3350042-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57191619690-
dc.authorscopusid57203171614-
dc.authorscopusid14007858600-
dc.authorscopusid7005745596-
dc.identifier.scopus2-s2.0-85182928882en_US
dc.identifier.wosWOS:001166468200001en_US
dc.institutionauthor-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 16, 2024

Page view(s)

94
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.