Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozuyla, M.-
dc.date.accessioned2024-02-24T14:32:20Z-
dc.date.available2024-02-24T14:32:20Z-
dc.date.issued2024-
dc.identifier.issn2375-4699-
dc.identifier.urihttps://doi.org/10.1145/3626523-
dc.identifier.urihttps://hdl.handle.net/11499/56726-
dc.description.abstractSentiment analysis of user generated product or service reviews is significant to enhance quality. Healthcare related computational linguistics studies, particularly analysis of drug based user criticisms, have principal importance above all. Sentiment analysis of healthcare reviews reveal the relations between patients, doc- tors and healthcare services. More specifically, sentiment analysis of drug reviews may be used to acquire relations such as adverse drug reactions (ADRs), diagnosis-treatment assist, and personalized therapy recom- mendations. Most of the drug review sentiment studies are in English. Though Turkish is a widely spoken language, there is limited research conducted on medical domain and there is particularly no study related to drug review sentiment analysis. In this study, we generated a Turkish drug review dataset and we eval- uated the generated dataset in detail against (i) traditional machine learning algorithms with language pre- processing steps, stemming and feature selection, (ii) deep learning algorithms with word2vec embedding language model, and (iii) various bidirectional encoder representations from transformers (BERT) models in terms of sentiment analysis. The experiments show that neural transformers are promising in Turkish drug review sentiment identification. In particular, Turkish dedicated BERT (BERTurk) resulted in 95.1% weighted- F1 score as the best drug review sentiment prediction performance. © 2024 Association for Computing Machinery. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofACM Transactions on Asian and Low-Resource Language Information Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbidirectional transformeren_US
dc.subjectdrug reviewen_US
dc.subjectTurkishen_US
dc.subjectword embeddingen_US
dc.subjectDeep learningen_US
dc.subjectDiagnosisen_US
dc.subjectEmbeddingsen_US
dc.subjectHealth careen_US
dc.subjectQuality controlen_US
dc.subjectSignal encodingen_US
dc.subjectAdverse drug reactionsen_US
dc.subjectBidirectional transformeren_US
dc.subjectDrug reviewen_US
dc.subjectEmbeddingsen_US
dc.subjectHealthcare servicesen_US
dc.subjectPersonalized therapiesen_US
dc.subjectSentiment analysisen_US
dc.subjectTurkishsen_US
dc.subjectUser-generateden_US
dc.subjectWord embeddingen_US
dc.subjectSentiment analysisen_US
dc.titleSentiment Analysis of Turkish Drug Reviews with Bidirectional Encoder Representations from Transformersen_US
dc.typeArticleen_US
dc.identifier.volume23en_US
dc.identifier.issue1en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1145/3626523-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57202919586-
dc.identifier.scopus2-s2.0-85183699701en_US
dc.identifier.wosWOS:001168635200015en_US
dc.institutionauthorBozuyla, M.-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.