Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56963
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Halil-
dc.contributor.authorCetin, Mahmut-
dc.contributor.authorErkan Can, Müge-
dc.contributor.authorAlsenjar, Omar-
dc.date.accessioned2024-05-06T16:24:31Z-
dc.date.available2024-05-06T16:24:31Z-
dc.date.issued2024-
dc.identifier.issn2071-1050-
dc.identifier.urihttps://doi.org/10.3390/su16062481-
dc.identifier.urihttps://hdl.handle.net/11499/56963-
dc.description.abstractAccurate estimations of actual evapotranspiration (ETa) are essential to various environmental issues. Artificial intelligence-based models are a promising alternative to the most common direct ETa estimation techniques and indirect methods by remote sensing (RS)-based surface energy balance models. Artificial Neural Networks (ANNs) are proven to be suitable for predicting reference evapotranspiration (ETo) and ETa based on RS data. This study aims to develop a methodology based on ANNs for estimating daily ETa values using NDVI and land surface temperature, coupled with limited site-specific climatic variables in a large irrigation catchment. The ANN model has been applied to the two different scenarios. Data from only the 38 days of satellite overpass dates was selected in Scenario I, while in Scenario II all datasets, i.e., the 769-day data were used. An irrigation scheme, located in the Mediterranean region of Turkiye, was selected, and a total of 38 Landsat images and local climatic data collected in 2021 and 2022 were used in the ANN model. The ETa results by the ANN model for Scenarios I and II showed that the R2 values for training (0.79 and 0.86), testing (0.75 and 0.81), and the entire dataset (0.76 and 0.84) were all remarkably high. Moreover, the results of the new ANN model in two scenarios showed an acceptable agreement with ETa-METRIC values. The proposed ANN model demonstrated the potential for obtaining daily ETa using limited climatic data and RS imagery. As a result, the suggested ANN model for daily ETa computation offers a trustworthy way to determine crop water usage in real time for sustainable water management in agriculture. It may also be used to assess how crop evapotranspiration in drought-prone areas will be affected by climate change in the 21st century.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkiyeen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSustainabilityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectevapotranspirationen_US
dc.subjectartificial neural networks (ANNs)en_US
dc.subjectremote sensing (RS)en_US
dc.subjectMETRIC modelen_US
dc.subjectclimate changeen_US
dc.subjectsustainabilityen_US
dc.subjectArtificial Neural-Networksen_US
dc.subjectEnergy-Balanceen_US
dc.subjectMapping Evapotranspirationen_US
dc.subjectCrop Evapotranspirationen_US
dc.subjectMetric Modelen_US
dc.subjectSystemen_US
dc.subjectAlgorithmen_US
dc.subjectWheaten_US
dc.titleDeveloping a new ANN model to estimate daily actual evapotranspiration using limited climatic data and remote sensing techniques for sustainable water managementen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue6en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.3390/su16062481-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid9273198600-
dc.authorscopusid7101936201-
dc.authorscopusid57219488776-
dc.authorscopusid58185514100-
dc.identifier.scopus2-s2.0-85188989478en_US
dc.identifier.wosWOS:001192772900001en_US
dc.institutionauthor-
local.message.claim2024-08-23T13:49:55.847+0300|||null|||submit_approve|||dc_contributor_author|||None*
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
sustainability-16-02481.pdf3.92 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 22, 2024

Page view(s)

30
checked on Aug 24, 2024

Download(s)

4
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.