Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/57288
Title: | Cost optimization of tall buildings having tube composite columns using social spider algorithm | Authors: | Paksoy, Ahmed Aydoğdu, İbrahim Akin, Alper |
Keywords: | composite column meta-heuristic social spider algorithm steel tube structural optimization Steel Space Frames Optimum Design Levy Flight |
Publisher: | Wiley | Abstract: | This study aims to develop an algorithmic approach to obtain optimum designs for tall buildings having composite columns and investigate the material cost advantages of these buildings over steel structures. The social spider optimization (SSO) algorithm, a new meta-heuristic optimization method that has shown promising results in optimizing frame structures, was used to obtain the optimum designs. Concrete-filled steel tube sections were chosen for composite columns. To define the optimization problem, we considered the material cost of the structure as the objective function, the size of columns (strength, deflection, drift, and geometric limitations) as the constraint functions, and ready steel sections as the design variables. We tested eight different frame structures of varying heights and irregularities to analyze how cost varied according to these parameters. Our results demonstrate that composite columns are a more cost-effective option than steel structures, even for buildings that are not considered high rises. We found that the difference in cost between the two types of structures increases with building height and irregularity. Additionally, our optimization algorithm was unable to find feasible designs for steel structures taller than 180 m using ready steel profiles. | URI: | https://doi.org/10.1002/tal.2122 https://hdl.handle.net/11499/57288 |
ISSN: | 1541-7794 1541-7808 |
Appears in Collections: | Bozkurt Meslek Yüksekokulu Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.