Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57321
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞimsek, M.U.-
dc.contributor.authorKök, İ.-
dc.contributor.authorÖzdemir, S.-
dc.date.accessioned2024-06-01T09:10:52Z-
dc.date.available2024-06-01T09:10:52Z-
dc.date.issued2024-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2024.123920-
dc.identifier.urihttps://hdl.handle.net/11499/57321-
dc.description.abstractAir pollution is a pervasive environmental and public health concern, prompting the imperative development of predictive systems to facilitate proactive interventions. The complexity of predicting air pollution arises from intricate factors, including the accumulation of pollutants, traffic dynamics, and industrial emissions. Traditional methodologies, reliant on historical or real-time data analysis, often encounter limitations in providing comprehensive and accurate solutions to this multifaceted problem. To address the existing problem, we propose a novel fog-assisted decentralized air quality prediction and event detection system (DeepFogAQ) for managing air pollution of future cities. We integrate Deep Learning (DL), Fog Computing (FC), Complex Event Processing (CEP), and virtualization technologies within the architecture of DeepFogAQ. Specifically, for predicting pollutant concentrations, we employ Transformers, CNN-LSTM, GRU, and RFR models. Additionally, we construct Fog and Cloud layers based on container-based virtualization technology. To demonstrate the feasibility of the system, the developed ML/DL models were run on DeepFogAQ and alarm levels for future air quality were derived. In this way, both the success of the prediction models and the validity of the architecture were ensured. Experimental results showed that Transformers is the most successful model in air quality prediction and event detection. As a result, the proposed DeepFogAQ architecture has the potential to offer a powerful alternative to decision-makers to solve the air pollution problem with its decentralized, scalable, and fault-tolerant structure. © 2024 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAir qualityen_US
dc.subjectComplex Event Processing (CEP)en_US
dc.subjectContainer-based virtualizationen_US
dc.subjectDeep learningen_US
dc.subjectFog computingen_US
dc.subjectComputer architectureen_US
dc.subjectContainersen_US
dc.subjectDecision makingen_US
dc.subjectFogen_US
dc.subjectFog computingen_US
dc.subjectForecastingen_US
dc.subjectIndustrial emissionsen_US
dc.subjectLong short-term memoryen_US
dc.subjectNetwork architectureen_US
dc.subjectVirtual realityen_US
dc.subjectVirtualizationen_US
dc.subjectAir quality predictionen_US
dc.subjectComplex event processingen_US
dc.subjectComplex eventsen_US
dc.subjectContainer-based virtualizationen_US
dc.subjectDecentraliseden_US
dc.subjectDeep learningen_US
dc.subjectDetection systemen_US
dc.subjectEvent Processingen_US
dc.subjectEvents detectionen_US
dc.subjectVirtualizationsen_US
dc.subjectAir qualityen_US
dc.titleDeepFogAQ: A fog-assisted decentralized air quality prediction and event detection systemen_US
dc.typeArticleen_US
dc.identifier.volume251en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1016/j.eswa.2024.123920-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57207703923-
dc.authorscopusid57200283688-
dc.authorscopusid23467461900-
dc.identifier.scopus2-s2.0-85190749379en_US
dc.identifier.wosWOS:001232455900001en_US
dc.institutionauthor-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 21, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.