Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57561
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElbi, Mehmet Doğan-
dc.contributor.authorÇapraz, Ezgi Özgören-
dc.contributor.authorŞahin, Emre-
dc.contributor.authorKoyuncuoğlu, Mehmet Ulaş-
dc.contributor.authorTuncer, Can-
dc.date.accessioned2024-07-28T17:16:00Z-
dc.date.available2024-07-28T17:16:00Z-
dc.date.issued2024-
dc.identifier.issn1300-7009-
dc.identifier.issn2147-5881-
dc.identifier.urihttps://doi.org/10.5505/pajes.2023.71242-
dc.identifier.urihttps://hdl.handle.net/11499/57561-
dc.description.abstractScientifically, the efficiency of a method refers to its power to best predict/calculate based on an evaluation following a certain process within the current scenario, parameter and/or data. For a good prediction, the most appropriate approach(es) to a problem should be considered and the related tests should be done reliably. Practical studies in the field of food safety and fruit quality are critical, with the accuracy, speed and economic parameters of the methods used being of particular importance. In this study, for the first time in literature an Arduino-based temperature and gas monitoring system (called e-nose) is used to monitor the decay of avocado fruit in a controlled experimental environment and support vector machines, a machine learning method, are used to detect (classification) the decay. In this study, test and validation success of over 99% was achieved with very few training-data for classification. The obtained results are encouraging in terms of the detection results of the developed e-nose and the method used to determine the level of decay in other fruit in cold storage.en_US
dc.language.isoenen_US
dc.publisherPamukkale Univen_US
dc.relation.ispartofPamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFood safetyen_US
dc.subjectMachine learningen_US
dc.subjectSupport vector machinesen_US
dc.subjectE-noseen_US
dc.subjectFruit qualityen_US
dc.subjectAvocadoen_US
dc.subjectElectronic Noseen_US
dc.subjectSystemen_US
dc.subjectMeaten_US
dc.subjectTechnologyen_US
dc.subjectCovid-19en_US
dc.subjectInterneten_US
dc.subjectThingsen_US
dc.subjectImpacten_US
dc.titleA classification based on support vector machines for monitoring avocado fruit qualityen_US
dc.typeArticleen_US
dc.identifier.volume30en_US
dc.identifier.issue3en_US
dc.identifier.startpage343en_US
dc.identifier.endpage353en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.5505/pajes.2023.71242-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1283276en_US
dc.identifier.wosWOS:001248187100007en_US
dc.institutionauthor-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.05. Food Engineering-
crisitem.author.dept08.01. Management Information Systems-
crisitem.author.dept08.01. Management Information Systems-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

12
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.