Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGunel, K.-
dc.contributor.authorHasiloglu, S.B.-
dc.date.accessioned2024-07-28T17:17:39Z-
dc.date.available2024-07-28T17:17:39Z-
dc.date.issued2024-
dc.identifier.isbn9798350363708-
dc.identifier.urihttps://doi.org/10.1109/SCM62608.2024.10554248-
dc.identifier.urihttps://hdl.handle.net/11499/57611-
dc.description27th International Conference on Soft Computing and Measurements, SCM 2024 -- 22 May 2024 through 24 May 2024 -- 200325en_US
dc.description.abstractThe paper is aimed at identifying the most suitable machine learning model for testing user credibility index in the E-marketplaces. The findings revealed that Gradient Boosting and Random Forest algorithms are the most suitable models for this study. © 2024 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; 122K017en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings of 2024 27th International Conference on Soft Computing and Measurements, SCM 2024en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcredibility indexen_US
dc.subjectdata analyticsen_US
dc.subjecte-marketplacesen_US
dc.subjectmachine learning modelsen_US
dc.subjectsentiment analysisen_US
dc.subjectweb scrapingen_US
dc.subjectCommerceen_US
dc.subjectData Analyticsen_US
dc.subjectMachine learningen_US
dc.subjectCredibility indicesen_US
dc.subjectData analyticsen_US
dc.subjectE-marketplacesen_US
dc.subjectGradient boostingen_US
dc.subjectMachine learning modelsen_US
dc.subjectRandom forest algorithmen_US
dc.subjectSentiment analysisen_US
dc.subjectWeb scrapingsen_US
dc.subjectSentiment analysisen_US
dc.titleMachine learning models for analysis of user credibility index in the e-marketplacesen_US
dc.typeConference Objecten_US
dc.identifier.startpage304en_US
dc.identifier.endpage307en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/SCM62608.2024.10554248-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid59197705200-
dc.authorscopusid26666833600-
dc.identifier.scopus2-s2.0-85197295064en_US
dc.institutionauthor-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept08.01. Management Information Systems-
crisitem.author.dept08.01. Management Information Systems-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.