Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/57611
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gunel, K. | - |
dc.contributor.author | Hasiloglu, S.B. | - |
dc.date.accessioned | 2024-07-28T17:17:39Z | - |
dc.date.available | 2024-07-28T17:17:39Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350363708 | - |
dc.identifier.uri | https://doi.org/10.1109/SCM62608.2024.10554248 | - |
dc.identifier.uri | https://hdl.handle.net/11499/57611 | - |
dc.description | 27th International Conference on Soft Computing and Measurements, SCM 2024 -- 22 May 2024 through 24 May 2024 -- 200325 | en_US |
dc.description.abstract | The paper is aimed at identifying the most suitable machine learning model for testing user credibility index in the E-marketplaces. The findings revealed that Gradient Boosting and Random Forest algorithms are the most suitable models for this study. © 2024 IEEE. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; 122K017 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings of 2024 27th International Conference on Soft Computing and Measurements, SCM 2024 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | credibility index | en_US |
dc.subject | data analytics | en_US |
dc.subject | e-marketplaces | en_US |
dc.subject | machine learning models | en_US |
dc.subject | sentiment analysis | en_US |
dc.subject | web scraping | en_US |
dc.subject | Commerce | en_US |
dc.subject | Data Analytics | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Credibility indices | en_US |
dc.subject | Data analytics | en_US |
dc.subject | E-marketplaces | en_US |
dc.subject | Gradient boosting | en_US |
dc.subject | Machine learning models | en_US |
dc.subject | Random forest algorithm | en_US |
dc.subject | Sentiment analysis | en_US |
dc.subject | Web scrapings | en_US |
dc.subject | Sentiment analysis | en_US |
dc.title | Machine learning models for analysis of user credibility index in the e-marketplaces | en_US |
dc.type | Conference Object | en_US |
dc.identifier.startpage | 304 | en_US |
dc.identifier.endpage | 307 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.1109/SCM62608.2024.10554248 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 59197705200 | - |
dc.authorscopusid | 26666833600 | - |
dc.identifier.scopus | 2-s2.0-85197295064 | en_US |
dc.institutionauthor | … | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 08.01. Management Information Systems | - |
crisitem.author.dept | 08.01. Management Information Systems | - |
Appears in Collections: | İktisadi ve İdari Bilimler Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.