Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/58933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzer, Ozgur-
dc.contributor.authorOzturk, Harun Kemal-
dc.date.accessioned2025-02-20T19:13:09Z-
dc.date.available2025-02-20T19:13:09Z-
dc.date.issued2025-
dc.identifier.issn1996-1073-
dc.identifier.urihttps://doi.org/10.3390/en18020311-
dc.identifier.urihttps://hdl.handle.net/11499/58933-
dc.description.abstractIn this study, a general description of geothermal power plants is provided, and the optimization methods used are summarized. Following the review of these optimization methods, the advantages of heuristic methods and the success of the developed models are demonstrated. The challenges in optimizing geothermal systems, including the limitations due to their complexity and the use of multiple parameters, are discussed. Heuristic methods, particularly the widely used artificial neural networks and genetic algorithms, are explained in general terms. Recent studies highlight that the combined use of artificial neural networks and genetic algorithms can produce faster and more consistent results. This demonstrates the benefits of using advanced methods for geothermal resource utilization and power plant optimization. An innovative optimization method has been developed using the operational data of an ORC geothermal power plant in the city of Izmir. The computational method, using genetic algorithms with artificial neural networks as the fitness function, has identified the optimal operating conditions, achieving a 39.41% increase in net power output. The plant's gross power generation has increased from 4943 kW to 6624 kW.en_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEnergyen_US
dc.subjectGeothermalen_US
dc.subjectOptimizationen_US
dc.subjectEfficiencyen_US
dc.subjectHeuristic Methodsen_US
dc.titleInnovative approaches of optimization methods used in geothermal power plants: artificial neural networks and genetic algorithmsen_US
dc.typeArticleen_US
dc.identifier.volume18en_US
dc.identifier.issue2en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.3390/en18020311-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid59529929800-
dc.authorscopusid7102639465-
dc.identifier.scopus2-s2.0-85216117934-
dc.identifier.wosWOS:001405259100001-
dc.identifier.scopusqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ3-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
energies-18-00311.pdf6.99 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.