Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/59001
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Osman Atik, M.A. | - |
dc.contributor.author | Çakir, S.U. | - |
dc.contributor.author | Özcan, A. | - |
dc.date.accessioned | 2025-02-20T19:16:07Z | - |
dc.date.available | 2025-02-20T19:16:07Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350365887 | - |
dc.identifier.uri | https://doi.org/10.1109/UBMK63289.2024.10773397 | - |
dc.identifier.uri | https://hdl.handle.net/11499/59001 | - |
dc.description.abstract | Bot detection is critical in safeguarding social networks against malicious activities such as propagating misinformation and shaping public opinion. Twitter, being extensively studied due to its accessibility and interactive nature, serves as an ideal platform for studying bot behaviors. In this study, we evaluate various network configurations using TwiBot-20 dataset to assess their efficacy in bot detection. Our investigation incorporates Graph Neural Networks (GNNs) models to leverage both network structure and textual content for enhanced detection accuracy. Experimental results demonstrate our combined model's superior performance, achieving high accuracy and robust metrics across the board. This research contributes to advancing bot detection methodologies, aiming to fortify social network integrity against emerging threats. © 2024 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Graph Neural Networks | en_US |
dc.subject | Social Network Analysis | en_US |
dc.subject | Twibot-20 Dataset | en_US |
dc.subject | Twitter Bot Detection | en_US |
dc.title | Enhanced bot detection on twibot-20 dataset | en_US |
dc.type | Conference Object | en_US |
dc.identifier.startpage | 923 | en_US |
dc.identifier.endpage | 927 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.1109/UBMK63289.2024.10773397 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 59520978700 | - |
dc.authorscopusid | 59521113500 | - |
dc.authorscopusid | 57218713000 | - |
dc.identifier.scopus | 2-s2.0-85215501815 | - |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.