Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/59001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsman Atik, M.A.-
dc.contributor.authorÇakir, S.U.-
dc.contributor.authorÖzcan, A.-
dc.date.accessioned2025-02-20T19:16:07Z-
dc.date.available2025-02-20T19:16:07Z-
dc.date.issued2024-
dc.identifier.isbn9798350365887-
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773397-
dc.identifier.urihttps://hdl.handle.net/11499/59001-
dc.description.abstractBot detection is critical in safeguarding social networks against malicious activities such as propagating misinformation and shaping public opinion. Twitter, being extensively studied due to its accessibility and interactive nature, serves as an ideal platform for studying bot behaviors. In this study, we evaluate various network configurations using TwiBot-20 dataset to assess their efficacy in bot detection. Our investigation incorporates Graph Neural Networks (GNNs) models to leverage both network structure and textual content for enhanced detection accuracy. Experimental results demonstrate our combined model's superior performance, achieving high accuracy and robust metrics across the board. This research contributes to advancing bot detection methodologies, aiming to fortify social network integrity against emerging threats. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraph Neural Networksen_US
dc.subjectSocial Network Analysisen_US
dc.subjectTwibot-20 Dataseten_US
dc.subjectTwitter Bot Detectionen_US
dc.titleEnhanced bot detection on twibot-20 dataseten_US
dc.typeConference Objecten_US
dc.identifier.startpage923en_US
dc.identifier.endpage927en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/UBMK63289.2024.10773397-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid59520978700-
dc.authorscopusid59521113500-
dc.authorscopusid57218713000-
dc.identifier.scopus2-s2.0-85215501815-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.