Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/59005
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖztürk, C.-
dc.date.accessioned2025-02-20T19:16:09Z-
dc.date.available2025-02-20T19:16:09Z-
dc.date.issued2024-
dc.identifier.isbn9798350365887-
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773424-
dc.identifier.urihttps://hdl.handle.net/11499/59005-
dc.description.abstractStock price prediction is crucial in the financial sector, impacted by various factors such as economic indicators, news events, and investor sentiment. Traditional time-series prediction models like Long Short-Term Memory (LSTM) and Autoregressive Integrated Moving Average (ARIMA) have been widely used but have limitations. This study explores the application of Time-series Generative Adversarial Networks (TimeGAN) for generating synthetic time-series data that can closely mirror real financial d ata. T imeGAN c ombines t he s trengths o f both supervised and unsupervised learning to maintain temporal dynamics and preserve the relationships between variables over time. Using a Google stock price dataset, we evaluate the performance of TimeGAN-generated synthetic data against real data across key metrics such as R2, Mean Absolute Error (MAE), and Mean Squared Log Error (MSLE). The results show that the synthetic data achieved an R2 score of 0.902, an MAE of 0.276, and an MSLE of 0.051, while the real data had an R2 score of 0.956, an MAE of 0.280, and an MSLE of 0.051. Visual analyses using Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) further validate that the synthetic data retains the diversity and distribution of the original dataset. This study demonstrates TimeGAN's potential to enhance financial forecasting by providing a reliable and realistic representation of stock price data. Future research can expand TimeGAN's application to other financial d atasets, o ffering robust tools for risk management and investment decision-making. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectFinancial Forecastingen_US
dc.subjectGenerative Adversarial Networks (Gans)en_US
dc.subjectPrincipal Component Analysis (Pca)en_US
dc.subjectStock Price Predictionen_US
dc.subjectSynthetic Data Generationen_US
dc.subjectT-Distributed Stochastic Neighbor Embedding (T-Sne)en_US
dc.subjectTime-Series Dataen_US
dc.subjectTimeganen_US
dc.titleEnhancing financial time-series analysis with timegan: a novel approachen_US
dc.typeConference Objecten_US
dc.identifier.startpage447en_US
dc.identifier.endpage450en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/UBMK63289.2024.10773424-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid59521110900-
dc.identifier.scopus2-s2.0-85215511134-
dc.institutionauthorÖztürk, C.-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept08.03. Economics-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.