Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/59007
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakir, S.U.-
dc.contributor.authorOsman Atik, M.A.-
dc.contributor.authorUluşar, U.D.-
dc.date.accessioned2025-02-20T19:16:10Z-
dc.date.available2025-02-20T19:16:10Z-
dc.date.issued2024-
dc.identifier.isbn9798350365887-
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773551-
dc.identifier.urihttps://hdl.handle.net/11499/59007-
dc.description.abstractCommunity detection in software dependency graphs is crucial for enhancing package recommendations, aiding project discovery, and improving software management. Traditional methods often struggle with the complexity of modern networks. This paper explores the application of Graph Neural Networks (GNNs) to detect communities within the Libraries.io dataset, which includes millions of projects and dependencies. We preprocess the data by generating node features through embeddings derived from project descriptions and additional metadata. Various unsupervised learning algorithms, including Node2Vec, Deep Graph Infomax (DGI), and Variational Graph Autoencoder (VGAE), are employed to generate node embeddings. These embeddings are then clustered using the K-Means algorithm to identify communities. Our experiments, conducted on PyPI, Maven, NuGet, and RubyGems platforms, show that while GNNs capture network structures, their performance in community detection is less effective than that of traditional methods like Louvain in certain cases. The evaluation using modularity scores highlights the potential of these methods to uncover meaningful patterns and relationships within software dependency graphs, ultimately informing better software engineering practices. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAuto-Encodersen_US
dc.subjectCommunity Detectionen_US
dc.subjectGraph Neural Networksen_US
dc.subjectK-Means Clusteringen_US
dc.subjectSoftware Library Dependency Graphsen_US
dc.titleCommunity detection on software library dependency graphs using graph neural networksen_US
dc.typeConference Objecten_US
dc.identifier.startpage1150en_US
dc.identifier.endpage1155en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/UBMK63289.2024.10773551-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid59521113500-
dc.authorscopusid59520978700-
dc.authorscopusid25228120800-
dc.identifier.scopus2-s2.0-85215519399-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.