Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarı, Murat-
dc.contributor.authorGürarslan, Gürhan-
dc.contributor.authorZeytinoälu, A.-
dc.date.accessioned2019-08-16T12:03:11Z
dc.date.available2019-08-16T12:03:11Z
dc.date.issued2011-
dc.identifier.issn0749-159X-
dc.identifier.urihttps://hdl.handle.net/11499/5913-
dc.identifier.urihttps://doi.org/10.1002/num.20585-
dc.description.abstractIn this article, up to tenth-order finite difference schemes are proposed to solve the generalized Burgers-Huxley equation. The schemes based on high-order differences are presented using Taylor series expansion. To establish the numerical solutions of the corresponding equation, the high-order schemes in space and a fourth-order Runge-Kutta scheme in time have been combined. Numerical experiments have been conducted to demonstrate the high-order accuracy of the current algorithms with relatively minimal computational effort. The results showed that use of the present approaches in the simulation is very applicable for the solution of the generalized Burgers-Huxley equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithms are seen to be very good alternatives to existing approaches for such physical applications. © 2010 Wiley Periodicals, Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofNumerical Methods for Partial Differential Equationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBurgers-Huxley equationen_US
dc.subjecthigh-order finite difference schemesen_US
dc.subjectnonlinear PDEen_US
dc.subjectRunge-Kuttaen_US
dc.subjectComputational efforten_US
dc.subjectFinite difference schemeen_US
dc.subjectFourth-orderen_US
dc.subjectHigh-orderen_US
dc.subjectHigh-order accuracyen_US
dc.subjectHigh-order finite differencesen_US
dc.subjectHigh-order schemeen_US
dc.subjectNumerical experimentsen_US
dc.subjectNumerical solutionen_US
dc.subjectPhysical applicationen_US
dc.subjectTaylor series expansionsen_US
dc.subjectAlgorithmsen_US
dc.subjectRunge Kutta methodsen_US
dc.subjectTaylor seriesen_US
dc.subjectNonlinear equationsen_US
dc.titleHigh-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equationen_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue5en_US
dc.identifier.startpage1313
dc.identifier.startpage1313en_US
dc.identifier.endpage1326en_US
dc.authorid0000-0003-0508-2917-
dc.authorid0000-0002-9796-3334-
dc.identifier.doi10.1002/num.20585-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-79960779815en_US
dc.identifier.wosWOS:000293846100018en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

33
checked on Dec 20, 2024

Page view(s)

66
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.