Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/59285
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Turgut, O. | - |
dc.contributor.author | Kök, I. | - |
dc.contributor.author | Özdemir, S. | - |
dc.date.accessioned | 2025-03-22T21:38:03Z | - |
dc.date.available | 2025-03-22T21:38:03Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350362480 | - |
dc.identifier.uri | https://doi.org/10.1109/BigData62323.2024.10825771 | - |
dc.identifier.uri | https://hdl.handle.net/11499/59285 | - |
dc.description | Ankura; IEEE Computer Society; IEEE Dataport; U.S. National Science Foundation (NSF); Virginia Tech | en_US |
dc.description.abstract | Today, crop diversification in agriculture is a critical issue to meet the increasing demand for food and to improve food safety and quality. This issue is considered to be the most important challenge for the next generation of agriculture due to diminishing natural resources, limited arable land and unpredictable climatic conditions caused by climate change. In this paper, we employ emerging technologies such as the Internet of Things (IoT), machine learning (ML) and explainable artificial intelligence (XAI) to improve operational efficiency and productivity in the agricultural sector. Specifically, we propose an edge computing-based explainable crop recommendation system, AgroXAI, which suggests suitable crops for a region based on weather and soil conditions. In this system, we provide local and global explanations of ML model decisions with methods such as ELI5, LIME, SHAP, which we integrate into ML models. More importantly, we provide regional alternative crop recommendations with the Counterfactual explainability method. In this way, we envision that our proposed AgroXAI system will be a platform that provides regional crop diversity in the next generation agriculture. © 2024 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024 -- 2024 IEEE International Conference on Big Data, BigData 2024 -- 15 December 2024 through 18 December 2024 -- Washington -- 206131 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Agriculture 4.0 | en_US |
dc.subject | Crop Recommendation | en_US |
dc.subject | Edge Computing | en_US |
dc.subject | Explainable Artificial Intelligence (Xai) | en_US |
dc.subject | Internet Of Things | en_US |
dc.title | Agroxai: Explainable Ai-Driven Crop Recommendation System for Agriculture 4.0 | en_US |
dc.type | Conference Object | en_US |
dc.identifier.startpage | 7208 | en_US |
dc.identifier.endpage | 7217 | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.1109/BigData62323.2024.10825771 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 58572456300 | - |
dc.authorscopusid | 57200283688 | - |
dc.authorscopusid | 23467461900 | - |
dc.identifier.scopus | 2-s2.0-85218011374 | - |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
crisitem.author.dept | 20.04. Mechatronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.