Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/59285
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurgut, O.-
dc.contributor.authorKök, I.-
dc.contributor.authorÖzdemir, S.-
dc.date.accessioned2025-03-22T21:38:03Z-
dc.date.available2025-03-22T21:38:03Z-
dc.date.issued2024-
dc.identifier.isbn9798350362480-
dc.identifier.urihttps://doi.org/10.1109/BigData62323.2024.10825771-
dc.identifier.urihttps://hdl.handle.net/11499/59285-
dc.descriptionAnkura; IEEE Computer Society; IEEE Dataport; U.S. National Science Foundation (NSF); Virginia Techen_US
dc.description.abstractToday, crop diversification in agriculture is a critical issue to meet the increasing demand for food and to improve food safety and quality. This issue is considered to be the most important challenge for the next generation of agriculture due to diminishing natural resources, limited arable land and unpredictable climatic conditions caused by climate change. In this paper, we employ emerging technologies such as the Internet of Things (IoT), machine learning (ML) and explainable artificial intelligence (XAI) to improve operational efficiency and productivity in the agricultural sector. Specifically, we propose an edge computing-based explainable crop recommendation system, AgroXAI, which suggests suitable crops for a region based on weather and soil conditions. In this system, we provide local and global explanations of ML model decisions with methods such as ELI5, LIME, SHAP, which we integrate into ML models. More importantly, we provide regional alternative crop recommendations with the Counterfactual explainability method. In this way, we envision that our proposed AgroXAI system will be a platform that provides regional crop diversity in the next generation agriculture. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2024 IEEE International Conference on Big Data, BigData 2024 -- 2024 IEEE International Conference on Big Data, BigData 2024 -- 15 December 2024 through 18 December 2024 -- Washington -- 206131en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAgriculture 4.0en_US
dc.subjectCrop Recommendationen_US
dc.subjectEdge Computingen_US
dc.subjectExplainable Artificial Intelligence (Xai)en_US
dc.subjectInternet Of Thingsen_US
dc.titleAgroxai: Explainable Ai-Driven Crop Recommendation System for Agriculture 4.0en_US
dc.typeConference Objecten_US
dc.identifier.startpage7208en_US
dc.identifier.endpage7217en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/BigData62323.2024.10825771-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid58572456300-
dc.authorscopusid57200283688-
dc.authorscopusid23467461900-
dc.identifier.scopus2-s2.0-85218011374-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept20.04. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.