Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/5959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarı, Murat-
dc.contributor.authorGürarslan, Gürhan-
dc.date.accessioned2019-08-16T12:03:23Z
dc.date.available2019-08-16T12:03:23Z
dc.date.issued2011-
dc.identifier.issn2040-7939-
dc.identifier.urihttps://hdl.handle.net/11499/5959-
dc.identifier.urihttps://doi.org/10.1002/cnm.1349-
dc.description.abstractThis paper explores the utility of a sixth-order compact finite difference (CFD6) scheme for the solution of the sine-Gordon equation. The CFD6 scheme in space and a third-order strong stability preserving Runge-Kutta scheme in time have been combined for solving the equation. This scheme needs less storage space, as opposed to the conventional numerical methods, and causes to less accumulation of numerical errors. The scheme is implemented to solve three test problems having exact solutions. Comparisons of the computed results with exact solutions showed that the method is capable of achieving high accuracy with minimal computational effort. The present results are also seen to be more accurate than some available results given in the literature. The scheme is seen to be a very reliable alternative technique to existing ones. Copyright © 2009 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Biomedical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompact finite difference schemesen_US
dc.subjectNonlinear PDEen_US
dc.subjectRunge-Kuttaen_US
dc.subjectSine-Gordon equationen_US
dc.subjectCompact finite differencesen_US
dc.subjectComputational efforten_US
dc.subjectExact solutionen_US
dc.subjectNon linear PDEen_US
dc.subjectNumerical errorsen_US
dc.subjectStorage spacesen_US
dc.subjectStrong stability preservingen_US
dc.subjectTest problemen_US
dc.subjectThird-orderen_US
dc.subjectFinite difference methoden_US
dc.subjectNonlinear equationsen_US
dc.subjectNumerical methodsen_US
dc.subjectPartial differential equationsen_US
dc.subjectRunge Kutta methodsen_US
dc.titleA sixth-order compact finite difference method for the one-dimensional sine-Gordon equationen_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue7en_US
dc.identifier.startpage1126
dc.identifier.startpage1126en_US
dc.identifier.endpage1138en_US
dc.authorid0000-0003-0508-2917-
dc.authorid0000-0002-9796-3334-
dc.identifier.doi10.1002/cnm.1349-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-79959732755en_US
dc.identifier.wosWOS:000292503400010en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

30
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

24
checked on Dec 20, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.