Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6042
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYağız, Saffet-
dc.contributor.authorKarahan, Halil-
dc.date.accessioned2019-08-16T12:03:52Z-
dc.date.available2019-08-16T12:03:52Z-
dc.date.issued2011-
dc.identifier.issn1365-1609-
dc.identifier.urihttps://hdl.handle.net/11499/6042-
dc.identifier.urihttps://doi.org/10.1016/j.ijrmms.2011.02.013-
dc.description.abstractThe aim of this study is to predict the performance of tunnel boring machines (TBMS) using particle swarm optimization technique (PSO). With this aim, a database including intact rock parameters comprising of strength and brittleness, and rock mass properties such as distance between planes of weakness and orientation of discontinuities, together with field machine performance data, was established using data collected along a 7.5. km long hard rock mechanical tunnel. The particle swarm optimization technique was applied to develop new predictive model for TBM performance. Seven different PSO models were developed using the assortment of datasets having various percentages of rock type in the dataset. Additionally, the PSO model was developed using the entire dataset in random without paying attention to rock type to generalize the model. As a result of the developed models via a variety of generated testing and training datasets, it is concluded that Model 7 and its resultant equation are the most precise among the seven models tested. © 2011 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Rock Mechanics and Mining Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectRock mass propertiesen_US
dc.subjectTBM penetration rateen_US
dc.subjectData setsen_US
dc.subjectDeveloped modelen_US
dc.subjectField machinesen_US
dc.subjectHard rocksen_US
dc.subjectIntact rocksen_US
dc.subjectParticle swarm optimization techniqueen_US
dc.subjectPenetration ratesen_US
dc.subjectPredictive modelsen_US
dc.subjectRock typesen_US
dc.subjectTraining data setsen_US
dc.subjectTunnel boring machinesen_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectEarth boring machinesen_US
dc.subjectFracture mechanicsen_US
dc.subjectRock mechanicsen_US
dc.subjectRocksen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectdata seten_US
dc.subjectdatabaseen_US
dc.subjectoptimizationen_US
dc.subjectrock mass classificationen_US
dc.subjectrock mechanicsen_US
dc.subjectTBMen_US
dc.subjecttunnelingen_US
dc.titlePrediction of hard rock TBM penetration rate using particle swarm optimizationen_US
dc.typeArticleen_US
dc.identifier.volume48en_US
dc.identifier.issue3en_US
dc.identifier.startpage427-
dc.identifier.startpage427en_US
dc.identifier.endpage433en_US
dc.authorid0000-0001-5346-5686-
dc.identifier.doi10.1016/j.ijrmms.2011.02.013-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-79952623576en_US
dc.identifier.wosWOS:000288425100009en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept10.08. Geological Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

190
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

157
checked on Nov 22, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.