Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/60459
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzek, Ahmet-
dc.contributor.authorSeckin, Mine-
dc.contributor.authorDemircioglu, Pinar-
dc.contributor.authorBogrekci, Ismail-
dc.date.accessioned2025-07-20T20:24:56Z-
dc.date.available2025-07-20T20:24:56Z-
dc.date.issued2025-
dc.identifier.issn2673-7248-
dc.identifier.urihttps://doi.org/10.3390/textiles5020012-
dc.identifier.urihttps://hdl.handle.net/11499/60459-
dc.descriptionBogrekci, Ismail/0000-0002-9494-5405en_US
dc.description.abstractThe cornerstone of textile manufacturing lies in quality control, with the early detection of defects being crucial to ensuring product quality and sustaining a competitive edge. Traditional inspection methods, which predominantly depend on manual processes, are limited by human error and scalability challenges. Recent advancements in artificial intelligence (AI)-encompassing computer vision, image processing, and machine learning-have transformed defect detection, delivering improved accuracy, speed, and reliability. This article critically examines the evolution of defect detection methods in the textile industry, transitioning from traditional manual inspections to AI-driven automated systems. It delves into the types of defects occurring at various production stages, assesses the strengths and weaknesses of conventional and automated approaches, and underscores the pivotal role of deep learning models, especially Convolutional Neural Networks (CNNs), in achieving high precision in defect identification. Additionally, the integration of cutting-edge technologies, such as high-resolution cameras and real-time monitoring systems, into quality control processes is explored, highlighting their contributions to sustainability and cost-effectiveness. By addressing the challenges and opportunities these advancements present, this study serves as a comprehensive resource for researchers and industry professionals seeking to harness AI in optimizing textile production and quality assurance amidst the ongoing digital transformation.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectDefect Detectionen_US
dc.subjectQuality Controlen_US
dc.subjectSustainabilityen_US
dc.subjectTextileen_US
dc.titleArtificial Intelligence Driving Innovation in Textile Defect Detectionen_US
dc.typeArticleen_US
dc.identifier.volume5en_US
dc.identifier.issue2en_US
dc.departmentPamukkale Universityen_US
dc.authoridBogrekci, Ismail/0000-0002-9494-5405-
dc.identifier.doi10.3390/textiles5020012-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57845369800-
dc.authorscopusid57211472849-
dc.authorscopusid37033766400-
dc.authorscopusid14520264900-
dc.authorwosidSeçkin, Mine/Aeg-8428-2022-
dc.authorwosidBogrekci, Ismail/Afq-2670-2022-
dc.authorwosidDemircioglu, Pinar/Afg-7330-2022-
dc.identifier.scopus2-s2.0-105009295220-
dc.identifier.wosWOS:001514660900001-
dc.identifier.scopusqualityN/A-
dc.description.woscitationindexEmerging Sources Citation Index-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Sep 13, 2025

WEB OF SCIENCETM
Citations

3
checked on Sep 14, 2025

Page view(s)

6
checked on Sep 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.