Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/60521
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNarman, I.-
dc.contributor.authorUckan, G.-
dc.date.accessioned2025-07-20T20:29:40Z-
dc.date.available2025-07-20T20:29:40Z-
dc.date.issued2025-
dc.identifier.isbn9798331510886-
dc.identifier.urihttps://doi.org/10.1109/ICHORA65333.2025.11017267-
dc.identifier.urihttps://hdl.handle.net/11499/60521-
dc.description.abstractThis paper presents an IoT-based solar tracking system that uses image processing to improve solar energy efficiency. A fixed camera is used to capture video frames of the sun, and these frames are processed in real time using the OpenCV library. By applying HSV thresholding and contour detection, the system finds the sun's bright area and calculates its azimuth and elevation angles. The angles are formatted as JSON and sent to the ThingsBoard IoT platform via MQTT. On the platform, a dashboard shows real-time data using charts, radial gauges, and alarm indicators. The system also uses the Hottel model to calculate theoretical solar radiation and compares it with the image-based results. To show how the system could be used in real life, a control algorithm was written to move a servo motor based on the azimuth angle. This part of the system hasn't been tested with hardware yet, but the Python code is ready to run on a Raspberry Pi. The simulation results show that the system tracks the sun accurately and provides consistent data when compared to theoretical values. The combination of image processing, IoT communication, and automation makes this system a simple and low-cost solution for solar tracking. © 2025 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofICHORA 2025 - 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings -- 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, ICHORA 2025 -- 23 May 2025 through 24 May 2025 -- Ankara -- 209351en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHottel Modelen_US
dc.subjectImage Processingen_US
dc.subjectIoTen_US
dc.subjectMQTTen_US
dc.subjectOpenCVen_US
dc.subjectRaspberry Pien_US
dc.subjectSolar Tracking Systemen_US
dc.subjectThingsBoarden_US
dc.titleMaximizing Energy Efficiency in a Solar Tracking System Using IoT-Based Image Processingen_US
dc.typeConference Objecten_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/ICHORA65333.2025.11017267-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid59951604900-
dc.authorscopusid46462063300-
dc.identifier.scopus2-s2.0-105008418050-
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Sep 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.