Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarı, Murat-
dc.date.accessioned2019-08-16T12:03:55Z-
dc.date.available2019-08-16T12:03:55Z-
dc.date.issued2011-
dc.identifier.issn1300-686X-
dc.identifier.urihttps://hdl.handle.net/11499/6055-
dc.description.abstractNumerical solutions of the generalized Burgers-Fisher equation are presented based on a polynomial-based differential quadrature method with minimal computational effort. To achieve this, a combination of a polynomial-based differential quadrature method in space and a third-order strong stability preserving Runge-Kutta scheme in time have been used. The proposed technique successfully worked to give reliable results in the form of numerical approximation converging very rapidly. The computed results have been compared with the exact solution to show the required accuracy of the method. The approximate solutions to the nonlinear equations were obtained. The approach is seen to be a very reliable alternative to the rival techniques for realistic problems. Copyright © Association for Scientific Research.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical and Computational Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDifferential Quadrature Methoden_US
dc.subjectGeneralized Burgers-Fisher Equationen_US
dc.subjectNonlinear PDEen_US
dc.subjectStrong Stability Preserving Runge-Kuttaen_US
dc.subjectApproximate solutionen_US
dc.subjectBurgers-Fisher equationen_US
dc.subjectComputational efforten_US
dc.subjectDifferential quadratureen_US
dc.subjectDifferential quadrature methodsen_US
dc.subjectExact solutionen_US
dc.subjectHigh-orderen_US
dc.subjectNon linear PDEen_US
dc.subjectNumerical approximationsen_US
dc.subjectNumerical solutionen_US
dc.subjectRunge-Kuttaen_US
dc.subjectStrong stability preservingen_US
dc.subjectThird-orderen_US
dc.subjectTime integrationen_US
dc.subjectDifferentiation (calculus)en_US
dc.subjectNumerical methodsen_US
dc.subjectPolynomialsen_US
dc.subjectRunge Kutta methodsen_US
dc.subjectStabilityen_US
dc.subjectNonlinear equationsen_US
dc.titleDifferential quadrature solutions of the generalized burgers-fisher equation with a strong stability preserving high-order time integrationen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue2en_US
dc.identifier.startpage477en_US
dc.identifier.endpage486en_US
dc.authorid0000-0003-0508-2917-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-79952980071en_US
dc.identifier.trdizinid121133en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
9c0bd798-64d4-4032-9cc6-632b4f5fb571.pdf156.2 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Oct 13, 2024

Page view(s)

48
checked on Aug 24, 2024

Download(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.