Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6077
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkyüz Daşcıoglu, Ayşegül-
dc.contributor.authorÇerdik Yaslan, Handan-
dc.date.accessioned2019-08-16T12:04:04Z-
dc.date.available2019-08-16T12:04:04Z-
dc.date.issued2011-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://hdl.handle.net/11499/6077-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2010.12.044-
dc.description.abstractBy the use of the Chebyshev series, a direct computational method for solving the higher order nonlinear differential equations has been developed in this paper. This method transforms the nonlinear differential equation into the matrix equation, which corresponds to a system of nonlinear algebraic equations with unknown Chebyshev coefficients, via Chebyshev collocation points. The solution of this system yields the Chebyshev coefficients of the solution function. An algorithm for this nonlinear system is also proposed in this paper. The method is valid for both initial-value and boundary-value problems. Several examples are presented to illustrate the accuracy and effectiveness of the method. © 2010 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChebyshev collocation methoden_US
dc.subjectLane-Emden, Van der Pol, Riccati equationsen_US
dc.subjectNonlinear differential equationen_US
dc.subjectChebysheven_US
dc.subjectChebyshev collocationen_US
dc.subjectChebyshev seriesen_US
dc.subjectHigh-orderen_US
dc.subjectHigher orderen_US
dc.subjectMatrix equationsen_US
dc.subjectNonlinear algebraic equationsen_US
dc.subjectNonlinear ordinary differential equationen_US
dc.subjectVan der Polen_US
dc.subjectAlgebraen_US
dc.subjectOrdinary differential equationsen_US
dc.subjectRiccati equationsen_US
dc.subjectNonlinear equationsen_US
dc.titleThe solution of high-order nonlinear ordinary differential equations by Chebyshev Seriesen_US
dc.typeArticleen_US
dc.identifier.volume217en_US
dc.identifier.issue12en_US
dc.identifier.startpage5658-
dc.identifier.startpage5658en_US
dc.identifier.endpage5666en_US
dc.authorid0000-0001-8931-6930-
dc.identifier.doi10.1016/j.amc.2010.12.044-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-79551645703en_US
dc.identifier.wosWOS:000286969000053en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

59
checked on Dec 7, 2024

WEB OF SCIENCETM
Citations

51
checked on Dec 12, 2024

Page view(s)

44
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.