Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6106
Title: Weak compositional zonation in a silicic magmatic system: Incesu ignimbrite, Central Anatolian Volcanic Province (Kayseri - Turkey)
Authors: Koralay, Tamer
Kadioglu, Y.K.
Davis, P.
Keywords: Crustal contamination and fractional crystallization
Incesu ignimbrite
Ocean Island Basalt (OIB)
The Central Anatolian Volcanic Province (CAVP)
Zoned magma chamber
chemical composition
continental collision
crustal contamination
fractional crystallization
igneous geochemistry
ignimbrite
magma chamber
magmatism
ocean island basalt
strontium isotope
subduction
tectonic evolution
trace element
Anatolia
Kayseri
Turkey
Abstract: The Central Anatolian Volcanic Province (CAVP), one of four major volcanic provinces in Turkey, plays a significant role in the interpretation of the tectonic evolution of Central Anatolia. The CAVP developed within a complex collisional system involving the African, Arabian and Eurasian plates during the Miocene. The volcanism exhibits complicated variations in mineralogical, petrological and geochemical compositions resulting from post-collisional lithospheric dynamics. The Incesu ignimbrite has 5-20m thick and covers an area of ~7800km2. It is composed of three stratigraphic levels. The lower level (LL) shows blackish brown and glassy welded structure. The middle level (ML) is a well-welded, reddish pink in color and has large amounts of fiamme. The upper level (UL) is grayish pink, weakly welded and has rock fragments of different compositions. The Incesu ignimbrite is composed of plagioclase (oligoclase, andesine)+pyroxene (augite, clinoenstatite)+opaque minerals and low amount of amphibole, biotite and quartz. Eutaxitic texture is dominant in ML and LL samples; these levels are more strongly and contain more flattened pumice fragments and volcanic glass shards than in the UL. A sharp color contrast defines the contact between LL and ML.Major, trace and rare earth element of the Incesu ignimbrite, characterized by their rhyolite, rhyodacite-dacite composition, medium-high K, calcalkaline and peraluminous nature, show fractional crystallization primarily controlled by plagioclase, clinopyroxene, magnetite, ilmenite and titanomagnetite. Sr and Nd isotopic ratios of Incesu ignimbrite display isotopic variations between the ignimbrite levels; they exhibit a limited range in 87Sr/86Sr (0.7043-0.7049) and 143Nd/144Nd (0.512716-0.512760). The Sr-Nd isotopic ratio of Incesu ignimbrite reveals an age of 3Ma. The ignimbrite evolved through fractional crystallization and crystal contamination of the parent magma derived from Ocean Island Basalt (OIB) like magma. This suggestion is supported by the AFC modeling based on the trace elements and Sr isotope data.Variation of several major oxide concentrations (Fe2O3, TiO2, CaO and K2O), trace element concetrations (V, Sr, Cs and Rb) and trace element ratios (Ba/Rb, Sr/, K/Sr, K/Nb, Rb/Sr, Rb/Y and Rb/Nb) versus SiO2 concentration show the magma chamber that generated the Incesu ignimbrite was compositionally zoned. All geochemical and Sr-Nd isotpic datas can be interepreted to be the result of a subduction related source. © 2010 Elsevier Ltd.
URI: https://hdl.handle.net/11499/6106
https://doi.org/10.1016/j.jseaes.2010.05.018
ISSN: 1367-9120
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

5
checked on Jan 26, 2025

Page view(s)

62
checked on Jan 21, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.