Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6133
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKavaklıoğlu, Kadir-
dc.date.accessioned2019-08-16T12:04:27Z
dc.date.available2019-08-16T12:04:27Z
dc.date.issued2011-
dc.identifier.issn0306-2619-
dc.identifier.urihttps://hdl.handle.net/11499/6133-
dc.identifier.urihttps://doi.org/10.1016/j.apenergy.2010.07.021-
dc.description.abstractSupport Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ?-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ?-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. © 2010 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofApplied Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectricity consumptionen_US
dc.subjectEnergy modelingen_US
dc.subjectPredictionen_US
dc.subjectSupport Vector Regressionen_US
dc.subjectTime seriesen_US
dc.subjectTurkeyen_US
dc.subjectEconomicsen_US
dc.subjectForecastingen_US
dc.subjectMean square erroren_US
dc.subjectRegression analysisen_US
dc.subjectVectorsen_US
dc.subjectElectricity-consumptionen_US
dc.subjectEnergy modelen_US
dc.subjectGross national producten_US
dc.subjectModeling and predictionsen_US
dc.subjectRoot mean square errorsen_US
dc.subjectSocio-economic indicatorsen_US
dc.subjectSupport vector regression (SVR)en_US
dc.subjectElectric power utilizationen_US
dc.subjectelectrical poweren_US
dc.subjectfuel consumptionen_US
dc.subjectfuture prospecten_US
dc.subjectpredictionen_US
dc.subjectsocioeconomic indicatoren_US
dc.subjecttime seriesen_US
dc.titleModeling and prediction of Turkey's electricity consumption using Support Vector Regressionen_US
dc.typeArticleen_US
dc.identifier.volume88en_US
dc.identifier.issue1en_US
dc.identifier.startpage368
dc.identifier.startpage368en_US
dc.identifier.endpage375en_US
dc.identifier.doi10.1016/j.apenergy.2010.07.021-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77957308800en_US
dc.identifier.wosWOS:000283209300041en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

247
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

213
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.