Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6243
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGültekin Çetiner, B.-
dc.contributor.authorSarı, Murat-
dc.date.accessioned2019-08-16T12:05:17Z-
dc.date.available2019-08-16T12:05:17Z-
dc.date.issued2010-
dc.identifier.issn1300-686X-
dc.identifier.urihttps://hdl.handle.net/11499/6243-
dc.description.abstractAssessment of the tibial rotations by the conventional approaches is generally difficult. An investigation has been made in this study to assess the tibial motions based on the prediction of the effects of physical factors as well as a portion of tibial measurements by making use of Artificial Neural Networks (ANN). Therefore, this study aimed at the prediction of the relations between several physical factors and tibial motion measurements in terms of Artificial Neural Networks. These factors include gender, age, weight, and height. Data collected for 484 healthy subjects have been analyzed by Artificial Neural Networks. Promising results showed that the ANN has been found to be appropriate for modeling and simulation in the data assessments. The paper gives detailed results regarding the use of ANN for modeling tibial rotations in terms of physical factors. The study shows the feasibility of ANN to predict the behaviour of knee joints. © Association for Scientific Research.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical and Computational Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectTibial motionen_US
dc.subjectArtificial Neural Networken_US
dc.subjectConventional approachen_US
dc.subjectData assessmenten_US
dc.subjectHealthy subjectsen_US
dc.subjectKnee jointen_US
dc.subjectModeling and simulationen_US
dc.subjectMotion measurementsen_US
dc.subjectPhysical factorsen_US
dc.subjectTibial rotationsen_US
dc.subjectComputer simulationen_US
dc.subjectForecastingen_US
dc.subjectJoints (anatomy)en_US
dc.subjectModelsen_US
dc.subjectRotationen_US
dc.subjectNeural networksen_US
dc.titleTibial rotation assessment using Artificial Neural Networksen_US
dc.typeArticleen_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.startpage34en_US
dc.identifier.endpage44en_US
dc.authorid0000-0003-0508-2917-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-78149259617en_US
dc.identifier.trdizinid98884en_US
dc.identifier.trdizinid2-s2.0-78149259617en_US
dc.identifier.wosWOS:000276584100004en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3f962f1f-1c22-4141-8666-5e5fa6981022.pdf500.5 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 22, 2024

Page view(s)

30
checked on Aug 24, 2024

Download(s)

4
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.