Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGölcü, Mustafa-
dc.contributor.authorPancar, Y.-
dc.contributor.authorSevil Ergür, H.-
dc.contributor.authorGöral, E.O.-
dc.date.accessioned2019-08-16T12:05:18Z-
dc.date.available2019-08-16T12:05:18Z-
dc.date.issued2010-
dc.identifier.issn1300-686X-
dc.identifier.urihttps://hdl.handle.net/11499/6245-
dc.description.abstractArtificial Neural Network (ANN) was used to predict the effects of splitter blades in a semi-open impeller on centrifugal pump performance. The characteristics of this impeller were compared with those of impellers without splitter blades. Experimental results for lengths of splitter blades in ratio of 1/3, 2/3, and 3/3 of the main blade length were evaluated by different ANN training algorithm. Training and test data were obtained from experimental studies. The best training algorithm and number of neurons were determined. The values of head, efficiency, and effective power were estimated in a semi-open impeller with splitter blades in ratio of 3/6 and 5/6 of the main blade length at the best efficiency point (b.e.p.). Here, as the splitter blade length increases; the flow rate and power increases, the efficiency decrease. All of the estimated values of performance in a semi-open impeller with splitter blades indicate the model works in line with expectations. Experimental studies to determine head, efficiency and effective power consumption in different types of pumps are complex, time consuming, and costly. It also requires specific measurement tools to obtain the characteristics values of pump. To overcome these difficulties, an ANN can be used for prediction of pump performance in semi open impeller. © Association for Scientific Research.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical and Computational Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural-networken_US
dc.subjectPerformanceen_US
dc.subjectSemi-open impelleren_US
dc.subjectSplitter bladeen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBest efficiency pointen_US
dc.subjectCharacteristics valuesen_US
dc.subjectExperimental studiesen_US
dc.subjectIn-lineen_US
dc.subjectMeasurement toolsen_US
dc.subjectPower characteristicen_US
dc.subjectPower Consumptionen_US
dc.subjectPower increaseen_US
dc.subjectPump performanceen_US
dc.subjectTest dataen_US
dc.subjectTraining algorithmsen_US
dc.subjectCentrifugal pumpsen_US
dc.subjectForecastingen_US
dc.subjectHydraulic machineryen_US
dc.subjectNeural networksen_US
dc.subjectWell pumpsen_US
dc.subjectBlowersen_US
dc.titlePrediction of head, efficiency, and power characteristics in a semi-open impelleren_US
dc.typeArticleen_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.startpage137en_US
dc.identifier.endpage147en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-78149268886en_US
dc.identifier.trdizinid98922en_US
dc.identifier.wosWOS:000276584100014en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept20.01. Automotive Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Prediction of head.pdf277.63 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 21, 2024

Page view(s)

66
checked on Aug 24, 2024

Download(s)

10
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.