Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGültekin Çetiner, B.-
dc.contributor.authorSarı, Murat-
dc.contributor.authorBorat, O.-
dc.date.accessioned2019-08-16T12:05:18Z-
dc.date.available2019-08-16T12:05:18Z-
dc.date.issued2010-
dc.identifier.issn1300-686X-
dc.identifier.urihttps://hdl.handle.net/11499/6246-
dc.description.abstractPrediction of traffic-flow in Istanbul has been a great concern for planners of the city. Istanbul as being one of the most crowded cities in the Europe has a rural population of more than 10 million. The related transportation agencies in Istanbul continuously collect data through many ways thanks to improvements in sensor technology and communication systems which allow to more closely monitor the condition of the city transportation system. Since monitoring alone cannot improve the safety or efficiency of the system, those agencies actively inform the drivers continuously through various media including television broadcasts, internet, and electronic display boards on many locations on the roads. Currently, the human expertise is employed to judge traffic-flow on the roads to inform the public. There is no reliance on past data and human experts give opinions only on the present condition without much idea on what will be the likely events in the next hours. Historical events such as school-timings, holidays and other periodic events cannot be utilized for judging the future traffic-flows. This paper makes a preliminary attempt to change scenario by using artificial neural networks (ANNs) to model the past historical data. It aims at the prediction of the traffic volume based on the historical data in each major junction in the city. ANNs have given very encouraging results with the suggested approach explained in the paper. © Association for Scientific Research.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical and Computational Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectTraffic predictionen_US
dc.subjectTransportation engineeringen_US
dc.subjectArtificial Neural Networken_US
dc.subjectElectronic displayen_US
dc.subjectFlow predictionen_US
dc.subjectHistorical dataen_US
dc.subjectHuman experten_US
dc.subjectHuman expertiseen_US
dc.subjectIstanbulen_US
dc.subjectRural populationen_US
dc.subjectSensor technologiesen_US
dc.subjectTelevision broadcastsen_US
dc.subjectTraffic volumesen_US
dc.subjectTransportation agenciesen_US
dc.subjectTransportation systemen_US
dc.subjectCivil engineeringen_US
dc.subjectCommunication systemsen_US
dc.subjectForecastingen_US
dc.subjectMathematical modelsen_US
dc.subjectPollution controlen_US
dc.subjectRoads and streetsen_US
dc.subjectTelevision broadcastingen_US
dc.subjectTransportationen_US
dc.subjectNeural networksen_US
dc.titleA neural network based traffic-flow prediction modelen_US
dc.typeArticleen_US
dc.identifier.volume15en_US
dc.identifier.issue2en_US
dc.identifier.startpage269en_US
dc.identifier.endpage278en_US
dc.identifier.doi10.3390/mca15020269-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-78149250994en_US
dc.identifier.trdizinid99033en_US
dc.identifier.wosWOS:000276584200012en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
c911a03d-024f-4781-a79b-5d4a952e5361.pdf204.95 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

80
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

69
checked on Nov 21, 2024

Page view(s)

58
checked on Aug 24, 2024

Download(s)

22
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.