Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T12:05:47Z
dc.date.available2019-08-16T12:05:47Z
dc.date.issued2010-
dc.identifier.issn1049-8923-
dc.identifier.urihttps://hdl.handle.net/11499/6302-
dc.identifier.urihttps://doi.org/10.1002/rnc.1524-
dc.description.abstractThis work presents a novel predictive model-based proportional integral derivative (PID) tuning and control approach for unknown nonlinear systems. For this purpose, an NARX model of the plant to be controlled is obtained and then it used for both PID tuning and correction of the control action. In this study, for comparison, neural networks (NNs) and support vector machines (SVMs) have been used for modeling. The proposed structure has been tested on two highly nonlinear systems via simulations by comparing control and convergence performances of SVM-and NN-Based PID controllers. The simulation results have shown that when used in the proposed scheme, both NN and SVM approaches provide rapid parameter convergence and considerably high control performance by yielding very small transient-and steady-state tracking errors. Moreover, they can maintain their control performances under noisy conditions, while convergence properties are deteriorated to some extent due to the measurement noises. Copyright © 2009 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Robust and Nonlinear Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive controlen_US
dc.subjectNeural networksen_US
dc.subjectPid auto-tuningen_US
dc.subjectSupport vector machinesen_US
dc.subjectAdaptive Controlen_US
dc.subjectAutotuningen_US
dc.subjectComparative studiesen_US
dc.subjectControl actionsen_US
dc.subjectControl approachen_US
dc.subjectControl mechanismen_US
dc.subjectControl performanceen_US
dc.subjectConvergence performanceen_US
dc.subjectConvergence propertiesen_US
dc.subjectMeasurement Noiseen_US
dc.subjectModel-baseden_US
dc.subjectNARX modelsen_US
dc.subjectParameter convergenceen_US
dc.subjectPID controllersen_US
dc.subjectPID tuningen_US
dc.subjectPredictive modelsen_US
dc.subjectProportional integral derivativesen_US
dc.subjectSimulation resulten_US
dc.subjectSteady state trackingen_US
dc.subjectSupport vectoren_US
dc.subjectModel predictive controlen_US
dc.subjectNonlinear systemsen_US
dc.subjectProportional control systemsen_US
dc.subjectThree term control systemsen_US
dc.subjectTuningen_US
dc.subjectTwo term control systemsen_US
dc.subjectAdaptive control systemsen_US
dc.titleA comparative study on a novel model-based PID tuning and control mechanism for nonlinear systemsen_US
dc.typeArticleen_US
dc.identifier.volume20en_US
dc.identifier.issue13en_US
dc.identifier.startpage1483
dc.identifier.startpage1483en_US
dc.identifier.endpage1501en_US
dc.authorid0000-0003-3806-1442-
dc.identifier.doi10.1002/rnc.1524-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77956370697en_US
dc.identifier.wosWOS:000280682300004en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

37
checked on Nov 21, 2024

Page view(s)

68
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.