Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6331
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Canvar, A. | - |
dc.contributor.author | Sarı, Murat | - |
dc.contributor.author | Dag, I. | - |
dc.date.accessioned | 2019-08-16T12:06:01Z | |
dc.date.available | 2019-08-16T12:06:01Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 0921-4526 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6331 | - |
dc.identifier.uri | https://doi.org/10.1016/j.physb.2010.05.008 | - |
dc.description.abstract | In this paper, to obtain accurate solutions of the Kortewegde Vries (KdV) equation, a TaylorGalerkin method is proposed based on cubic B-splines over finite elements. To tackle this a forward time-stepping technique is accepted in time. To see the accuracy of the proposed method, L2 and L? error norms are calculated in three test problems. The numerical results are found to be in good agreement with exact solutions and with the literature. The applied numerical method has also been shown to be unconditionally stable. In order to find out the physical behaviour of more intricate models, this procedure has been seen to have a great potentiality. © 2010 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Physica B: Condensed Matter | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cubic B-splines | en_US |
dc.subject | KdV equation | en_US |
dc.subject | Partial differential equations | en_US |
dc.subject | Soliton | en_US |
dc.subject | TaylorGalerkin finite element method | en_US |
dc.subject | Error norm | en_US |
dc.subject | Exact solution | en_US |
dc.subject | Finite Element | en_US |
dc.subject | Galerkin finite element methods | en_US |
dc.subject | KdV equations | en_US |
dc.subject | Korteweg-de Vries equations | en_US |
dc.subject | Numerical results | en_US |
dc.subject | Taylor-Galerkin method | en_US |
dc.subject | Test problem | en_US |
dc.subject | Time-stepping | en_US |
dc.subject | Unconditionally stable | en_US |
dc.subject | Computational fluid dynamics | en_US |
dc.subject | Computational mechanics | en_US |
dc.subject | Models | en_US |
dc.subject | Solitons | en_US |
dc.subject | Splines | en_US |
dc.subject | Finite element method | en_US |
dc.title | A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 405 | en_US |
dc.identifier.issue | 16 | en_US |
dc.identifier.startpage | 3376 | |
dc.identifier.startpage | 3376 | en_US |
dc.identifier.endpage | 3383 | en_US |
dc.authorid | 0000-0003-0508-2917 | - |
dc.identifier.doi | 10.1016/j.physb.2010.05.008 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-77955305115 | en_US |
dc.identifier.wos | WOS:000280542600035 | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.owner | Pamukkale University | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
22
checked on Jan 4, 2025
WEB OF SCIENCETM
Citations
20
checked on Apr 2, 2025
Page view(s)
58
checked on Mar 4, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.