Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6366
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Selçuk, Hüseyin | - |
dc.date.accessioned | 2019-08-16T12:06:34Z | |
dc.date.available | 2019-08-16T12:06:34Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 0043-1354 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6366 | - |
dc.identifier.uri | https://doi.org/10.1016/j.watres.2010.04.034 | - |
dc.description.abstract | In this study, disinfection and formation of disinfection by-products (DBPs) were studied in a photoelectrocatalytic (PEC) treatment system. Disinfection performance of titanium dioxide (TiO2) in the PEC system was determined through Escherichia coli (E. coli) inactivation. Humic acid (HA) was used as a model organic compound and its removal was monitored by total organic carbon (TOC) measurements using 410 nm (color) and 254 nm (UV254) wavelengths. Trihalomethanes (THMs) were measured for the evaluation of DBPs formation during PEC treatment of chloride and HA mixture. It was found that unlike photocatalytic treatment, THMs might form in the PEC system. To investigate the effects of anions on the PEC treatment, chloride (Cl-), sulfate (SO42-), phosphoric acid (H2PO4-)/hydrogen phosphate (HPO42-) and bicarbonate (HCO3-) ions were added separately to the HA and bacterial suspensions. Presence of H2PO4-/HPO42- and HCO3- ions resulted in inhibitory effects on both HA degradation and E. coli inactivation, which were also examined in the photoanode. It was observed that the presence of HA had a strong inhibitory effect on the disinfection of E. coli. © 2010 Elsevier Ltd. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Water Research | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Disinfection | en_US |
dc.subject | Disinfection by-products | en_US |
dc.subject | Humic acid | en_US |
dc.subject | Photoelectrocatalytic | en_US |
dc.subject | Titanium dioxide | en_US |
dc.subject | Trihalomethanes | en_US |
dc.subject | Disinfection by-product | en_US |
dc.subject | Disinfection byproducts | en_US |
dc.subject | E. coli | en_US |
dc.subject | E.Coli inactivation | en_US |
dc.subject | Effects of anions | en_US |
dc.subject | Escherichia coli (E. coli) | en_US |
dc.subject | Hydrogen phosphates | en_US |
dc.subject | Inhibitory effect | en_US |
dc.subject | Photoanode | en_US |
dc.subject | Photocatalytic treatment | en_US |
dc.subject | TiO | en_US |
dc.subject | Total organic carbon | en_US |
dc.subject | Treatment systems | en_US |
dc.subject | Biological materials | en_US |
dc.subject | Chlorine compounds | en_US |
dc.subject | Escherichia coli | en_US |
dc.subject | Ions | en_US |
dc.subject | Organic acids | en_US |
dc.subject | Organic carbon | en_US |
dc.subject | Oxides | en_US |
dc.subject | Phosphoric acid | en_US |
dc.subject | Titanium | en_US |
dc.subject | anion | en_US |
dc.subject | bicarbonate | en_US |
dc.subject | chloride | en_US |
dc.subject | disinfectant agent | en_US |
dc.subject | humic acid | en_US |
dc.subject | phosphate | en_US |
dc.subject | phosphoric acid | en_US |
dc.subject | sulfate | en_US |
dc.subject | titanium dioxide | en_US |
dc.subject | trihalomethane | en_US |
dc.subject | humic substance | en_US |
dc.subject | catalysis | en_US |
dc.subject | disinfection | en_US |
dc.subject | electrochemistry | en_US |
dc.subject | formation mechanism | en_US |
dc.subject | inhibition | en_US |
dc.subject | microbial activity | en_US |
dc.subject | oxide | en_US |
dc.subject | photochemistry | en_US |
dc.subject | titanium | en_US |
dc.subject | wastewater | en_US |
dc.subject | water treatment | en_US |
dc.subject | adsorption | en_US |
dc.subject | article | en_US |
dc.subject | electrode | en_US |
dc.subject | oxidation | en_US |
dc.subject | photocatalysis | en_US |
dc.subject | priority journal | en_US |
dc.subject | total organic carbon | en_US |
dc.subject | ultraviolet radiation | en_US |
dc.subject | analysis | en_US |
dc.subject | isolation and purification | en_US |
dc.subject | microbial viability | en_US |
dc.subject | procedures | en_US |
dc.subject | Anions | en_US |
dc.subject | Catalysis | en_US |
dc.subject | Electrochemistry | en_US |
dc.subject | Electrodes | en_US |
dc.subject | Humic Substances | en_US |
dc.subject | Microbial Viability | en_US |
dc.subject | Photochemistry | en_US |
dc.subject | Bacteria (microorganisms) | en_US |
dc.title | Disinfection and formation of disinfection by-products in a photoelectrocatalytic system | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 44 | en_US |
dc.identifier.issue | 13 | en_US |
dc.identifier.startpage | 3966 | |
dc.identifier.startpage | 3966 | en_US |
dc.identifier.endpage | 3972 | en_US |
dc.identifier.doi | 10.1016/j.watres.2010.04.034 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.pmid | 20510429 | en_US |
dc.identifier.scopus | 2-s2.0-77953811961 | en_US |
dc.identifier.wos | WOS:000279766700022 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.01. Environmental Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
46
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
47
checked on Nov 16, 2024
Page view(s)
58
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.