Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T12:06:49Z
dc.date.available2019-08-16T12:06:49Z
dc.date.issued2010-
dc.identifier.issn0925-2312-
dc.identifier.urihttps://hdl.handle.net/11499/6388-
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2010.02.008-
dc.description.abstractIn this work, a novel neuro-fuzzy control structure has been proposed for unknown nonlinear plants, which is referred to as the SVM-based ANFIS controller since it has been emerged from the fusion of adaptive network fuzzy inference system (ANFIS) and support vector machines (SVMs). In the proposed controller, an obtained SVM model of the plant is used to extract the gradient information and to predict the future behavior of the plant dynamics, which are necessary to find the additive correction term and to update the ANFIS parameters. The motivation behind the use of SVMs for modeling the plant dynamics is the fact that the SVM algorithms possess higher generalization ability and guarantee the global minima. The simulation results have revealed that the SVM-based ANFIS controller exhibits considerably high performance by yielding very small transient- and steady-state tracking errors and that it can maintain its performance under noisy conditions. © 2010 Elsevier B.V.en_US
dc.language.isoenen_US
dc.relation.ispartofNeurocomputingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntelligent controlen_US
dc.subjectNeuro-fuzzy systemsen_US
dc.subjectSupport vector machinesen_US
dc.subjectAdaptive network fuzzy inference systemsen_US
dc.subjectGeneralization abilityen_US
dc.subjectGlobal minimaen_US
dc.subjectGradient informationsen_US
dc.subjectNeurofuzzy controlen_US
dc.subjectNeurofuzzy systemen_US
dc.subjectNonlinear planten_US
dc.subjectPlant dynamicsen_US
dc.subjectSimulation resulten_US
dc.subjectSteady state trackingen_US
dc.subjectSVM algorithmen_US
dc.subjectSVM modelen_US
dc.subjectAdaptive control systemsen_US
dc.subjectControllersen_US
dc.subjectFuzzy controlen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectVectorsen_US
dc.subjectarticleen_US
dc.subjectclassification algorithmen_US
dc.subjectcomputer modelen_US
dc.subjectcomputer simulationen_US
dc.subjectfuzzy systemen_US
dc.subjectmathematical computingen_US
dc.subjectperformance measurement systemen_US
dc.subjectpriority journalen_US
dc.subjectsupport vector machineen_US
dc.subjectsystem analysisen_US
dc.titleSupport vector machines based neuro-fuzzy control of nonlinear systemsen_US
dc.typeArticleen_US
dc.identifier.volume73en_US
dc.identifier.issue10-12en_US
dc.identifier.startpage2097
dc.identifier.startpage2097en_US
dc.identifier.endpage2107en_US
dc.identifier.doi10.1016/j.neucom.2010.02.008-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77952551246en_US
dc.identifier.wosWOS:000279134100060en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 16, 2024

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.