Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFırat, Mahmut-
dc.contributor.authorTuran, M.E.-
dc.date.accessioned2019-08-16T12:06:50Z
dc.date.available2019-08-16T12:06:50Z
dc.date.issued2010-
dc.identifier.issn1747-6585-
dc.identifier.urihttps://hdl.handle.net/11499/6391-
dc.identifier.urihttps://doi.org/10.1111/j.1747-6593.2008.00162.x-
dc.description.abstractIn this study, the applicability of an adaptive neuro-fuzzy inference system (ANFIS) to forecast for monthly river flows is investigated. For this, the Göksu river in the Seyhan catchment located in southern Turkey was chosen as a case study. The river flow forecasting models having various input structures are trained and tested by the ANFIS method. The results of ANFIS models for both training and testing are evaluated and the best-fit forecasting model is determined. The best-fit model is also trained and tested by feed forward neural networks (FFNN) and traditional autoregressive (AR) methods, and the performances of the models are compared. Moreover, ANFIS and FFNN models are verified by a validation data set including river flow data records during the time period 1997-2000. The results demonstrate that ANFIS can be applied successfully and provides high accuracy and reliability for monthly river flow forecasting. © 2009 The Authors. Journal compilation.en_US
dc.language.isoenen_US
dc.relation.ispartofWater and Environment Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectFuzzy logicen_US
dc.subjectGöksu Riveren_US
dc.subjectMonthly river flowen_US
dc.subjectRiver flow forecasting.en_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectANFIS methoden_US
dc.subjectANFIS modelen_US
dc.subjectAutoregressive methodsen_US
dc.subjectBest-fit modelsen_US
dc.subjectForecasting modelsen_US
dc.subjectRiver flowen_US
dc.subjectRiver flow forecastingen_US
dc.subjectTime periodsen_US
dc.subjectTraining and testingen_US
dc.subjectValidation dataen_US
dc.subjectCatchmentsen_US
dc.subjectForecastingen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectNeural networksen_US
dc.subjectStream flowen_US
dc.subjectRiversen_US
dc.subjectriver wateren_US
dc.subjectaccuracy assessmenten_US
dc.subjectartificial neural networken_US
dc.subjectforecasting methoden_US
dc.subjectfuzzy mathematicsen_US
dc.subjecthydrological modelingen_US
dc.subjectriver flowen_US
dc.subjectarticleen_US
dc.subjectcatchmenten_US
dc.subjectenvironmental monitoringen_US
dc.subjectforecastingen_US
dc.subjectfuzzy logicen_US
dc.subjectfuzzy systemen_US
dc.subjecthydropoweren_US
dc.subjectirrigation (agriculture)en_US
dc.subjectmodelen_US
dc.subjectpositive feedbacken_US
dc.subjectpriority journalen_US
dc.subjectriver ecosystemen_US
dc.subjectTurkey (republic)en_US
dc.subjectGoksu Riveren_US
dc.subjectTurkeyen_US
dc.titleMonthly river flow forecasting by an adaptive neuro-fuzzy inference systemen_US
dc.typeArticleen_US
dc.identifier.volume24en_US
dc.identifier.issue2en_US
dc.identifier.startpage116
dc.identifier.startpage116en_US
dc.identifier.endpage125en_US
dc.authorid0000-0002-8010-9289-
dc.identifier.doi10.1111/j.1747-6593.2008.00162.x-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77953949991en_US
dc.identifier.wosWOS:000278376700004en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 21, 2024

Page view(s)

20
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.