Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6391
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fırat, Mahmut | - |
dc.contributor.author | Turan, M.E. | - |
dc.date.accessioned | 2019-08-16T12:06:50Z | |
dc.date.available | 2019-08-16T12:06:50Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 1747-6585 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6391 | - |
dc.identifier.uri | https://doi.org/10.1111/j.1747-6593.2008.00162.x | - |
dc.description.abstract | In this study, the applicability of an adaptive neuro-fuzzy inference system (ANFIS) to forecast for monthly river flows is investigated. For this, the Göksu river in the Seyhan catchment located in southern Turkey was chosen as a case study. The river flow forecasting models having various input structures are trained and tested by the ANFIS method. The results of ANFIS models for both training and testing are evaluated and the best-fit forecasting model is determined. The best-fit model is also trained and tested by feed forward neural networks (FFNN) and traditional autoregressive (AR) methods, and the performances of the models are compared. Moreover, ANFIS and FFNN models are verified by a validation data set including river flow data records during the time period 1997-2000. The results demonstrate that ANFIS can be applied successfully and provides high accuracy and reliability for monthly river flow forecasting. © 2009 The Authors. Journal compilation. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Water and Environment Journal | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ANFIS | en_US |
dc.subject | Fuzzy logic | en_US |
dc.subject | Göksu River | en_US |
dc.subject | Monthly river flow | en_US |
dc.subject | River flow forecasting. | en_US |
dc.subject | Adaptive neuro-fuzzy inference system | en_US |
dc.subject | ANFIS method | en_US |
dc.subject | ANFIS model | en_US |
dc.subject | Autoregressive methods | en_US |
dc.subject | Best-fit models | en_US |
dc.subject | Forecasting models | en_US |
dc.subject | River flow | en_US |
dc.subject | River flow forecasting | en_US |
dc.subject | Time periods | en_US |
dc.subject | Training and testing | en_US |
dc.subject | Validation data | en_US |
dc.subject | Catchments | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Fuzzy inference | en_US |
dc.subject | Fuzzy systems | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Stream flow | en_US |
dc.subject | Rivers | en_US |
dc.subject | river water | en_US |
dc.subject | accuracy assessment | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | forecasting method | en_US |
dc.subject | fuzzy mathematics | en_US |
dc.subject | hydrological modeling | en_US |
dc.subject | river flow | en_US |
dc.subject | article | en_US |
dc.subject | catchment | en_US |
dc.subject | environmental monitoring | en_US |
dc.subject | forecasting | en_US |
dc.subject | fuzzy logic | en_US |
dc.subject | fuzzy system | en_US |
dc.subject | hydropower | en_US |
dc.subject | irrigation (agriculture) | en_US |
dc.subject | model | en_US |
dc.subject | positive feedback | en_US |
dc.subject | priority journal | en_US |
dc.subject | river ecosystem | en_US |
dc.subject | Turkey (republic) | en_US |
dc.subject | Goksu River | en_US |
dc.subject | Turkey | en_US |
dc.title | Monthly river flow forecasting by an adaptive neuro-fuzzy inference system | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 116 | |
dc.identifier.startpage | 116 | en_US |
dc.identifier.endpage | 125 | en_US |
dc.authorid | 0000-0002-8010-9289 | - |
dc.identifier.doi | 10.1111/j.1747-6593.2008.00162.x | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-77953949991 | en_US |
dc.identifier.wos | WOS:000278376700004 | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.owner | Pamukkale University | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
22
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
19
checked on Nov 21, 2024
Page view(s)
20
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.