Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAburas, H.M.-
dc.contributor.authorCetiner, B.G.-
dc.contributor.authorSarı, Murat-
dc.date.accessioned2019-08-16T12:06:53Z-
dc.date.available2019-08-16T12:06:53Z-
dc.date.issued2010-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/11499/6396-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.11.077-
dc.description.abstractThis research aims to predict the dengue confirmed-cases using Artificial Neural Networks (ANNs). Real data provided by Singaporean National Environment Agency (NEA) was used to model the behavior of dengue cases based on the physical parameters of mean temperature, mean relative humidity and total rainfall. The set of data recorded consists of 14,209 dengue reported confirmed-cases have been analyzed by using the ANNs. It has been produced very encouraging results in this study. The results showed that the four important features namely mean temperature, mean relative humidity, total rainfall and the total number of dengue confirmed-cases were very effective in predicting the number of dengue confirmed-cases. The ANNs have been found to be very effective processing systems for modelling and simulation in the dengue confirmed-cases data assessments. The proposed prediction model can be used world-wide and in any period of time since the approach does not use time information in building it. © 2009 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectDengueen_US
dc.subjectModellingen_US
dc.subjectPredictionen_US
dc.subjectSimulationen_US
dc.subjectArtificial neural networksen_US
dc.subjectData assessmenten_US
dc.subjectEnvironment Agencyen_US
dc.subjectIn-buildingsen_US
dc.subjectMean temperatureen_US
dc.subjectModelling and simulationsen_US
dc.subjectNeural network modelen_US
dc.subjectPhysical parametersen_US
dc.subjectPrediction modelen_US
dc.subjectProcessing systemsen_US
dc.subjectRelative humiditiesen_US
dc.subjectTime informationen_US
dc.subjectTotal rainfallen_US
dc.subjectAtmospheric humidityen_US
dc.subjectComputer simulationen_US
dc.subjectMathematical modelsen_US
dc.subjectMoistureen_US
dc.subjectNeural networksen_US
dc.titleDengue confirmed-cases prediction: A neural network model [Article]en_US
dc.typeArticleen_US
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.startpage4256-
dc.identifier.startpage4256en_US
dc.identifier.endpage4260en_US
dc.identifier.doi10.1016/j.eswa.2009.11.077-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77249091164en_US
dc.identifier.wosWOS:000276532600025en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

60
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

37
checked on Nov 21, 2024

Page view(s)

74
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.