Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYağız, Saffet-
dc.contributor.authorGokceoglu, C.-
dc.date.accessioned2019-08-16T12:07:23Z
dc.date.available2019-08-16T12:07:23Z
dc.date.issued2010-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/11499/6442-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.07.046-
dc.description.abstractBrittleness is one of the most crucial rock features for underground excavation and design considerations in rock mass. Direct standard testing method for measuring rock brittleness, the combination of rock properties rather than only one rock parameter have not available yet. Therefore, it is indirectly calculated as a function of some rock properties such as rock strength by using various ratios and prediction tools. The aim of this study is to estimate the rock brittleness by constructing fuzzy inference system and nonlinear regression analysis. For this purpose, a dataset established by utilizing the relevant laboratory rock tests (i.e., punch penetration, uniaxial compressive strength, Brazilian tensile strength and unit weight of rock) at the Earth Mechanics Institute of Colorado School of Mines in the USA on the rock samples assembled from 48 tunnels projects throughout the world. Running the established models, the performance values such as RMSE, VAF, absolute error and coefficient of cross-correlation were computed for developed models. The VAF and RMSE indices were calculated as 89.8% and 2.97 for the nonlinear multiple regression model and 83.1% and 3.82 for fuzzy model, respectively. As a result, these indices revealed that the prediction performance of the nonlinear multiple regression model is higher than that of the fuzzy inference system model. However, it is concluded that both constructed models exhibited a high performance according to the obtained prediction values. © 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBrittlenessen_US
dc.subjectFuzzy inference systemen_US
dc.subjectNonlinear regressionen_US
dc.subjectAbsolute erroren_US
dc.subjectColorado School of Minesen_US
dc.subjectCross correlationsen_US
dc.subjectData setsen_US
dc.subjectDesign considerationsen_US
dc.subjectDeveloped modelen_US
dc.subjectFuzzy inference systemsen_US
dc.subjectFuzzy modelsen_US
dc.subjectMultiple regression modelen_US
dc.subjectNon-linear regression analysisen_US
dc.subjectNonlinear regression modelsen_US
dc.subjectPerformance valueen_US
dc.subjectPrediction performanceen_US
dc.subjectPrediction toolsen_US
dc.subjectPunch penetrationen_US
dc.subjectRock brittlenessen_US
dc.subjectRock propertiesen_US
dc.subjectRock sampleen_US
dc.subjectRock strengthen_US
dc.subjectStandard testingen_US
dc.subjectUnderground excavationen_US
dc.subjectUniaxial compressive strengthen_US
dc.subjectUnit weighten_US
dc.subjectCompressive strengthen_US
dc.subjectExcavationen_US
dc.subjectFracture mechanicsen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectMetal analysisen_US
dc.subjectMiningen_US
dc.subjectModel structuresen_US
dc.subjectPlasticityen_US
dc.subjectRegression analysisen_US
dc.subjectStatistical testsen_US
dc.subjectTensile strengthen_US
dc.subjectRocksen_US
dc.titleApplication of fuzzy inference system and nonlinear regression models for predicting rock brittlenessen_US
dc.typeArticleen_US
dc.identifier.volume37en_US
dc.identifier.issue3en_US
dc.identifier.startpage2265
dc.identifier.startpage2265en_US
dc.identifier.endpage2272en_US
dc.identifier.doi10.1016/j.eswa.2009.07.046-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-70449523078en_US
dc.identifier.wosWOS:000272846500051en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

121
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

112
checked on Nov 16, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.