Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaf, Betül-
dc.date.accessioned2019-08-16T12:07:45Z
dc.date.available2019-08-16T12:07:45Z
dc.date.issued2010-
dc.identifier.issn0022-1694-
dc.identifier.urihttps://hdl.handle.net/11499/6480-
dc.identifier.urihttps://doi.org/10.1016/j.jhydrol.2009.11.011-
dc.description.abstractFlood observations in hydrological data sets contain frequently outliers, and this causes problems for water resource researchers and planners if not addressed correctly. This study analyses how outliers affect the identification of regional probability distributions using L-moment methods. The main objective of the study is to assess the effect(s) of discordancy detection measures on regional flood probability types and the accuracy of the estimates based on the regional analysis. The classical and robust discordancy measures for discordant site identification are used to determine regional probability distributions in order to identify the effects of discordant sites on the regional probability distribution in a region of the Menderes River Basins in Turkey. The other objective is to show whether a probability model type and flood estimation based on the model is reliable if discordancy sites in the region are not detected. In the study, the homogeneity of the basin was tested using the L-moments based on the heterogeneity for two discordancy measures, assessed by carrying out 500 simulations using the four parameter Kappa distribution. Based on these tests, two sub-regions are defined, the Upper-Menderes and Lower-Menderes sub-regions, that have different numbers of sites for both discordancy measures. According to the L-moments goodness of statistic criteria, the generalized extreme value distribution was determined as the best-fit distribution for the Upper-Menderes and Lower-Menderes sub-regions based on the classical discordancy measure. The generalized extreme value distribution was also found to be the best-fit distribution for the Upper-Menderes sub-region for the robust discordancy measure, while the Pearson Type 3 distribution was the best for the Lower-Menderes sub-region based on the robust measure. To appraise the results for the sub-regions, the relative root mean square error and relative bias were employed. The results show that the homogeneous region determined from the robust discordancy measure is more accurate than the region identified using the classical robust measure. This means that the classical robust detection measure of flood frequency analysis needs to be improved. © 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Hydrologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDiscordancy measureen_US
dc.subjectGoodness-of-fit measureen_US
dc.subjectL-momentsen_US
dc.subjectRegional frequency analysisen_US
dc.subjectRegionalizationen_US
dc.subjectFlood estimationen_US
dc.subjectFlood frequency analysisen_US
dc.subjectGeneralized extreme value distributionen_US
dc.subjectHomogeneous regionsen_US
dc.subjectHydrological dataen_US
dc.subjectKappa distributionen_US
dc.subjectMoment methodsen_US
dc.subjectProbability modelsen_US
dc.subjectRegional analysisen_US
dc.subjectRegional flood frequency analysisen_US
dc.subjectRiver basinsen_US
dc.subjectRobust detectionen_US
dc.subjectRoot mean square errorsen_US
dc.subjectSite identificationen_US
dc.subjectSub-regionsen_US
dc.subjectFlood controlen_US
dc.subjectFloodsen_US
dc.subjectMethod of momentsen_US
dc.subjectRegional planningen_US
dc.subjectSimulatorsen_US
dc.subjectWater resourcesen_US
dc.subjectProbability distributionsen_US
dc.subjectdata seten_US
dc.subjectflood frequencyen_US
dc.subjectfloodingen_US
dc.subjectfrequency analysisen_US
dc.subjectnumerical modelen_US
dc.subjectregionalizationen_US
dc.subjectwater resourceen_US
dc.subjectMenderes Basinen_US
dc.subjectTurkeyen_US
dc.titleAssessment of the effects of discordant sites on regional flood frequency analysisen_US
dc.typeArticleen_US
dc.identifier.volume380en_US
dc.identifier.issue3-4en_US
dc.identifier.startpage362
dc.identifier.startpage362en_US
dc.identifier.endpage375en_US
dc.identifier.doi10.1016/j.jhydrol.2009.11.011-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-72249105954en_US
dc.identifier.wosWOS:000274497100012en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

40
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

36
checked on Nov 21, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.