Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKayhan, Ali Haydar-
dc.contributor.authorCeylan, Hüseyin-
dc.contributor.authorAyvaz, Mustafa Tamer-
dc.contributor.authorGürarslan, Gürhan-
dc.date.accessioned2019-08-16T12:07:55Z
dc.date.available2019-08-16T12:07:55Z
dc.date.issued2010-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/11499/6492-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2010.03.046-
dc.description.abstractThis study deals with a new hybrid global-local optimization algorithm named PSOLVER that combines particle swarm optimization (PSO) and a spreadsheet "Solver" to solve continuous optimization problems. In the hybrid PSOLVER algorithm, PSO and Solver are used as the global and local optimizers, respectively. Thus, PSO and Solver work mutually by feeding each other in terms of initial and sub-initial solution points to produce fine initial solutions and avoid from local optima. A comparative study has been carried out to show the effectiveness of the PSOLVER over standard PSO algorithm. Then, six constrained and three engineering design problems have been solved and obtained results are compared with other heuristic and non-heuristic solution algorithms. Identified results demonstrate that, the hybrid PSOLVER algorithm requires less iterations and gives more effective results than other heuristic and non-heuristic solution algorithms. © 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHybridizationen_US
dc.subjectOptimizationen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectSolveren_US
dc.subjectSpreadsheetsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectProblem solvingen_US
dc.subjectComparative studiesen_US
dc.subjectContinuous optimization problemsen_US
dc.subjectEngineering design problemsen_US
dc.subjectHeuristic solutionsen_US
dc.subjectHybrid particle swarm optimization algorithmen_US
dc.subjectLocal optimizersen_US
dc.titlePSOLVER: A new hybrid particle swarm optimization algorithm for solving continuous optimization problemsen_US
dc.typeArticleen_US
dc.identifier.volume37en_US
dc.identifier.issue10en_US
dc.identifier.startpage6798
dc.identifier.startpage6798en_US
dc.identifier.endpage6808en_US
dc.authorid0000-0001-7089-1521-
dc.authorid0000-0002-8840-4936-
dc.authorid0000-0002-8566-2825-
dc.authorid0000-0002-9796-3334-
dc.identifier.doi10.1016/j.eswa.2010.03.046-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-81355132073en_US
dc.identifier.wosWOS:000279408200009en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

45
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

40
checked on Nov 21, 2024

Page view(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.