Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6492
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kayhan, Ali Haydar | - |
dc.contributor.author | Ceylan, Hüseyin | - |
dc.contributor.author | Ayvaz, Mustafa Tamer | - |
dc.contributor.author | Gürarslan, Gürhan | - |
dc.date.accessioned | 2019-08-16T12:07:55Z | |
dc.date.available | 2019-08-16T12:07:55Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6492 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2010.03.046 | - |
dc.description.abstract | This study deals with a new hybrid global-local optimization algorithm named PSOLVER that combines particle swarm optimization (PSO) and a spreadsheet "Solver" to solve continuous optimization problems. In the hybrid PSOLVER algorithm, PSO and Solver are used as the global and local optimizers, respectively. Thus, PSO and Solver work mutually by feeding each other in terms of initial and sub-initial solution points to produce fine initial solutions and avoid from local optima. A comparative study has been carried out to show the effectiveness of the PSOLVER over standard PSO algorithm. Then, six constrained and three engineering design problems have been solved and obtained results are compared with other heuristic and non-heuristic solution algorithms. Identified results demonstrate that, the hybrid PSOLVER algorithm requires less iterations and gives more effective results than other heuristic and non-heuristic solution algorithms. © 2010 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hybridization | en_US |
dc.subject | Optimization | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Solver | en_US |
dc.subject | Spreadsheets | en_US |
dc.subject | Heuristic algorithms | en_US |
dc.subject | Particle swarm optimization (PSO) | en_US |
dc.subject | Problem solving | en_US |
dc.subject | Comparative studies | en_US |
dc.subject | Continuous optimization problems | en_US |
dc.subject | Engineering design problems | en_US |
dc.subject | Heuristic solutions | en_US |
dc.subject | Hybrid particle swarm optimization algorithm | en_US |
dc.subject | Local optimizers | en_US |
dc.title | PSOLVER: A new hybrid particle swarm optimization algorithm for solving continuous optimization problems | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 37 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 6798 | |
dc.identifier.startpage | 6798 | en_US |
dc.identifier.endpage | 6808 | en_US |
dc.authorid | 0000-0001-7089-1521 | - |
dc.authorid | 0000-0002-8840-4936 | - |
dc.authorid | 0000-0002-8566-2825 | - |
dc.authorid | 0000-0002-9796-3334 | - |
dc.identifier.doi | 10.1016/j.eswa.2010.03.046 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-81355132073 | en_US |
dc.identifier.wos | WOS:000279408200009 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
45
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
40
checked on Nov 21, 2024
Page view(s)
64
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.