Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6512
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fırat, Mahmut | - |
dc.contributor.author | Güngör, Mahmud | - |
dc.date.accessioned | 2019-08-16T12:08:07Z | |
dc.date.available | 2019-08-16T12:08:07Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 1436-3240 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6512 | - |
dc.identifier.uri | https://doi.org/10.1007/s00477-009-0315-1 | - |
dc.description.abstract | Accurate forecasting of sediment is an important issue for reservoir design and water pollution control in rivers and reservoirs. In this study, an adaptive neuro-fuzzy inference system (ANFIS) approach is used to construct monthly sediment forecasting system. To illustrate the applicability of ANFIS method the Great Menderes basin is chosen as the study area. The models with various input structures are constructed for the purpose of identification of the best structure. The performance of the ANFIS models in training and testing sets are compared with the observed data. To get more accurate evaluation of the results ANFIS models, the best fit model structures are also tested by artificial neural networks (ANN) and multiple linear regression (MLR) methods. The results of three methods are compared, and it is observed that the ANFIS is preferable and can be applied successfully because it provides high accuracy and reliability for forecasting of monthly total sediment. © 2009 Springer-Verlag. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Stochastic Environmental Research and Risk Assessment | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ANFIS | en_US |
dc.subject | ANN | en_US |
dc.subject | Great Menderes catchment | en_US |
dc.subject | Monthly sediment | en_US |
dc.subject | Total sediment forecasting | en_US |
dc.subject | Adaptive neuro-fuzzy inference system | en_US |
dc.subject | ANFIS method | en_US |
dc.subject | ANFIS model | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Best-fit models | en_US |
dc.subject | Forecasting system | en_US |
dc.subject | Multiple linear regression method | en_US |
dc.subject | Observed data | en_US |
dc.subject | Reservoir design | en_US |
dc.subject | Study areas | en_US |
dc.subject | Training and testing | en_US |
dc.subject | Catchments | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Fuzzy inference | en_US |
dc.subject | Fuzzy systems | en_US |
dc.subject | Linear regression | en_US |
dc.subject | Model structures | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Reservoirs (water) | en_US |
dc.subject | River control | en_US |
dc.subject | Runoff | en_US |
dc.subject | Water pollution | en_US |
dc.subject | Water pollution control | en_US |
dc.subject | Sedimentology | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | forecasting method | en_US |
dc.subject | fuzzy mathematics | en_US |
dc.subject | multiple regression | en_US |
dc.subject | numerical model | en_US |
dc.subject | sediment | en_US |
dc.subject | Menderes Basin | en_US |
dc.subject | Turkey | en_US |
dc.title | Monthly total sediment forecasting using adaptive neuro fuzzy inference system | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 259 | |
dc.identifier.startpage | 259 | en_US |
dc.identifier.endpage | 270 | en_US |
dc.identifier.doi | 10.1007/s00477-009-0315-1 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-77954386440 | en_US |
dc.identifier.wos | WOS:000273561400008 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
47
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
45
checked on Nov 22, 2024
Page view(s)
56
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.