Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6512
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFırat, Mahmut-
dc.contributor.authorGüngör, Mahmud-
dc.date.accessioned2019-08-16T12:08:07Z
dc.date.available2019-08-16T12:08:07Z
dc.date.issued2010-
dc.identifier.issn1436-3240-
dc.identifier.urihttps://hdl.handle.net/11499/6512-
dc.identifier.urihttps://doi.org/10.1007/s00477-009-0315-1-
dc.description.abstractAccurate forecasting of sediment is an important issue for reservoir design and water pollution control in rivers and reservoirs. In this study, an adaptive neuro-fuzzy inference system (ANFIS) approach is used to construct monthly sediment forecasting system. To illustrate the applicability of ANFIS method the Great Menderes basin is chosen as the study area. The models with various input structures are constructed for the purpose of identification of the best structure. The performance of the ANFIS models in training and testing sets are compared with the observed data. To get more accurate evaluation of the results ANFIS models, the best fit model structures are also tested by artificial neural networks (ANN) and multiple linear regression (MLR) methods. The results of three methods are compared, and it is observed that the ANFIS is preferable and can be applied successfully because it provides high accuracy and reliability for forecasting of monthly total sediment. © 2009 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofStochastic Environmental Research and Risk Assessmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectANNen_US
dc.subjectGreat Menderes catchmenten_US
dc.subjectMonthly sedimenten_US
dc.subjectTotal sediment forecastingen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectANFIS methoden_US
dc.subjectANFIS modelen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBest-fit modelsen_US
dc.subjectForecasting systemen_US
dc.subjectMultiple linear regression methoden_US
dc.subjectObserved dataen_US
dc.subjectReservoir designen_US
dc.subjectStudy areasen_US
dc.subjectTraining and testingen_US
dc.subjectCatchmentsen_US
dc.subjectForecastingen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectLinear regressionen_US
dc.subjectModel structuresen_US
dc.subjectNeural networksen_US
dc.subjectReservoirs (water)en_US
dc.subjectRiver controlen_US
dc.subjectRunoffen_US
dc.subjectWater pollutionen_US
dc.subjectWater pollution controlen_US
dc.subjectSedimentologyen_US
dc.subjectartificial neural networken_US
dc.subjectforecasting methoden_US
dc.subjectfuzzy mathematicsen_US
dc.subjectmultiple regressionen_US
dc.subjectnumerical modelen_US
dc.subjectsedimenten_US
dc.subjectMenderes Basinen_US
dc.subjectTurkeyen_US
dc.titleMonthly total sediment forecasting using adaptive neuro fuzzy inference systemen_US
dc.typeArticleen_US
dc.identifier.volume24en_US
dc.identifier.issue2en_US
dc.identifier.startpage259
dc.identifier.startpage259en_US
dc.identifier.endpage270en_US
dc.identifier.doi10.1007/s00477-009-0315-1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77954386440en_US
dc.identifier.wosWOS:000273561400008en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

47
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

45
checked on Nov 22, 2024

Page view(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.