Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSen, Gargi-
dc.contributor.authorAkyol, Erdal-
dc.date.accessioned2019-08-16T12:08:10Z-
dc.date.available2019-08-16T12:08:10Z-
dc.date.issued2010-
dc.identifier.issn1561-8633-
dc.identifier.urihttps://hdl.handle.net/11499/6517-
dc.identifier.urihttps://doi.org/10.5194/nhess-10-685-2010-
dc.description.abstractThe determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method. © 2010 Author(s).en_US
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.relation.ispartofNatural Hazards and Earth System Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcone penetration testen_US
dc.subjectdata seten_US
dc.subjectestimation methoden_US
dc.subjectgenetic algorithmen_US
dc.subjectliquefactionen_US
dc.subjectnonlinearityen_US
dc.subjectsandy soilen_US
dc.subjectsoftwareen_US
dc.titleA genetic-algorithm approach for assessing the liquefaction potential of sandy soilsen_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.issue4en_US
dc.identifier.startpage685-
dc.identifier.startpage685en_US
dc.identifier.endpage698en_US
dc.authorid0000-0002-5534-3962-
dc.identifier.doi10.5194/nhess-10-685-2010-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-77951078508en_US
dc.identifier.wosWOS:000277185000007en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
A genetic-algorithm approach for assessing the liquefaction potential of.pdf567.16 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 14, 2024

Page view(s)

28
checked on Aug 24, 2024

Download(s)

10
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.