Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6552
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ekren, O. | - |
dc.contributor.author | Yetkin Ekren, Banu | - |
dc.date.accessioned | 2019-08-16T12:08:34Z | |
dc.date.available | 2019-08-16T12:08:34Z | |
dc.date.issued | 2010 | - |
dc.identifier.issn | 0306-2619 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6552 | - |
dc.identifier.uri | https://doi.org/10.1016/j.apenergy.2009.05.022 | - |
dc.description.abstract | In this paper, we perform Simulated Annealing (SA) algorithm for optimizing size of a PV/wind integrated hybrid energy system with battery storage. The proposed methodology is a heuristic approach which uses a stochastic gradient search for the global optimization. In the study, the objective function is the minimization of the hybrid energy system total cost. And the decision variables are PV size, wind turbine rotor swept area and the battery capacity. The optimum result obtained by SA algorithm is compared with our former study's result. Consequently, it is come up with that the SA algorithm gives better result than the Response Surface Methodology (RSM). The case study is realized for a campus area in Turkey. © 2009 Elsevier Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Applied Energy | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hybrid energy | en_US |
dc.subject | Optimization | en_US |
dc.subject | Simulated annealing | en_US |
dc.subject | Simulation | en_US |
dc.subject | Electric batteries | en_US |
dc.subject | Energy conversion | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Heuristic methods | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Wind turbines | en_US |
dc.subject | Hybrid energy system | en_US |
dc.subject | Objective functions | en_US |
dc.subject | Response surface methodology | en_US |
dc.subject | Simulated annealing algorithms | en_US |
dc.subject | Stochastic gradient search | en_US |
dc.subject | Wind turbine rotors | en_US |
dc.subject | algorithm | en_US |
dc.subject | heuristics | en_US |
dc.subject | optimization | en_US |
dc.subject | stochasticity | en_US |
dc.subject | wind turbine | en_US |
dc.title | Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 87 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 592 | |
dc.identifier.startpage | 592 | en_US |
dc.identifier.endpage | 598 | en_US |
dc.identifier.doi | 10.1016/j.apenergy.2009.05.022 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-75449092278 | en_US |
dc.identifier.wos | WOS:000272110300025 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
crisitem.author.dept | 10.09. Industrial Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
442
checked on Jan 25, 2025
WEB OF SCIENCETM
Citations
381
checked on Jan 29, 2025
Page view(s)
40
checked on Jan 21, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.