Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6555
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCanyurt, Olcay Ersel-
dc.contributor.authorHajela, P.-
dc.date.accessioned2019-08-16T12:08:36Z
dc.date.available2019-08-16T12:08:36Z
dc.date.issued2010-
dc.identifier.issn1615-147X-
dc.identifier.urihttps://hdl.handle.net/11499/6555-
dc.identifier.urihttps://doi.org/10.1007/s00158-008-0351-3-
dc.description.abstractThere have been increased activities in the study of genetic algorithms (GA) for problems of design optimization. The present paper describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the Cellular Genetic Algorithm approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site, and as in cellular automata computations, takes place on the basis of local interaction with neighboring cells. A focus of the paper is in the adaptation of the cellular genetic algorithm approach in the solution of multicriteria design optimization problems. The proposed paper describes the implementation of this approach and examines its efficiency in the context of representative design optimization problems. © 2008 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofStructural and Multidisciplinary Optimizationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCellular genetic algorithmen_US
dc.subjectMulticriteria optimizationen_US
dc.subjectParallel GAen_US
dc.subjectCell stateen_US
dc.subjectCellular genetic algorithmsen_US
dc.subjectDesign informationen_US
dc.subjectDesign optimizationen_US
dc.subjectDesign optimization problemen_US
dc.subjectGrained modelsen_US
dc.subjectGrid of cellsen_US
dc.subjectLocal interactionsen_US
dc.subjectMulti-criteria design optimizationen_US
dc.subjectMulticriterion designen_US
dc.subjectBioinformaticsen_US
dc.subjectCellular automataen_US
dc.subjectComputational efficiencyen_US
dc.subjectDesignen_US
dc.subjectOptimizationen_US
dc.subjectParallel algorithmsen_US
dc.subjectPattern recognition systemsen_US
dc.subjectTranslation (languages)en_US
dc.subjectGenetic algorithmsen_US
dc.titleCellular genetic algorithm technique for the multicriterion design optimizationen_US
dc.typeArticleen_US
dc.identifier.volume40en_US
dc.identifier.issue1-6en_US
dc.identifier.startpage201
dc.identifier.startpage201en_US
dc.identifier.endpage214en_US
dc.authorid0000-0003-3690-6608-
dc.identifier.doi10.1007/s00158-008-0351-3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-72149109042en_US
dc.identifier.wosWOS:000272178500013en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

11
checked on Dec 18, 2024

Page view(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.