Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6599
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikçi, Serdar.-
dc.date.accessioned2019-08-16T12:08:56Z-
dc.date.available2019-08-16T12:08:56Z-
dc.date.issued2009-
dc.identifier.isbn03029743 (ISSN)-
dc.identifier.isbn3642049206-
dc.identifier.isbn9783642049200-
dc.identifier.urihttps://hdl.handle.net/11499/6599-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-04921-7_40-
dc.description.abstractIn this study, the previously proposed Support Vector Machines Based Generalized Predictive Control (SVM-Based GPC) method [1] has been applied in controlling the experimental three-tank system. The SVM regression algorithms have been successfully employed in modeling nonlinear systems due to their advantageous peculiarities such as assurance of the global minima and higher generalization capability. Thus, the fact that better modeling accuracy yields better control performance has motivated us to use an SVM model in the GPC loop [1]. In the method, the SVM model of the unknown plant is used to predict future behavior of the plant and also to extract the gradient information which is used in the Cost Function Minimization (CFM) block. The experimental results have revealed that SVM-Based GPC provides very high performance in controlling the system, i.e., the liquid level of the system can track the different types of reference inputs with very small transient-and steady-state errors even in a noisy environment when it is controlled by SVM-Based GPC. © Springer-Verlag 2009.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectControl performanceen_US
dc.subjectGeneralization capabilityen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectGlobal minimaen_US
dc.subjectGradient informationsen_US
dc.subjectLiquid levelen_US
dc.subjectModeling accuracyen_US
dc.subjectModeling nonlinear systemen_US
dc.subjectNoisy environmenten_US
dc.subjectReference inputsen_US
dc.subjectSteady state errorsen_US
dc.subjectSVM modelen_US
dc.subjectSVM regression algorithmsen_US
dc.subjectThree-tank systemsen_US
dc.subjectAlgorithmsen_US
dc.subjectPredictive control systemsen_US
dc.subjectTanks (containers)en_US
dc.subjectSupport vector machinesen_US
dc.titleControlling the experimental three-tank system via support vector machinesen_US
dc.typeConference Objecten_US
dc.identifier.volume5495 LNCSen_US
dc.identifier.startpage391-
dc.identifier.startpage391en_US
dc.identifier.endpage400en_US
dc.identifier.doi10.1007/978-3-642-04921-7_40-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-78650719277en_US
dc.identifier.wosWOS:000279120700040en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.