Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBacanlı, Ülker Güner-
dc.contributor.authorFırat, Mahmut-
dc.contributor.authorDikbaş, Fatih-
dc.date.accessioned2019-08-16T12:09:00Z-
dc.date.available2019-08-16T12:09:00Z-
dc.date.issued2009-
dc.identifier.issn1436-3240-
dc.identifier.urihttps://hdl.handle.net/11499/6606-
dc.identifier.urihttps://doi.org/10.1007/s00477-008-0288-5-
dc.description.abstractDrought causes huge losses in agriculture and has many negative influences on natural ecosystems. In this study, the applicability of Adaptive Neuro-Fuzzy Inference System (ANFIS) for drought forecasting and quantitative value of drought indices, the Standardized Precipitation Index (SPI), is investigated. For this aim, 10 rainfall gauging stations located in Central Anatolia, Turkey are selected as study area. Monthly mean rainfall and SPI values are used for constructing the ANFIS forecasting models. For all stations, data sets include a total of 516 data records measured between in 1964 and 2006 years and data sets are divided into two subsets, training and testing. Different ANFIS forecasting models for SPI at time scales 1-12 months were trained and tested. The results of ANFIS forecasting models and observed values are compared and performances of models were evaluated. Moreover, the best fit models have been also trained and tested by Feed Forward Neural Networks (FFNN). The results demonstrate that ANFIS can be successfully applied and provide high accuracy and reliability for drought forecasting. © 2008 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofStochastic Environmental Research and Risk Assessmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectCentral Anatoliaen_US
dc.subjectDrought forecastingen_US
dc.subjectDrought indicesen_US
dc.subjectTurkeyen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectBest-fit modelsen_US
dc.subjectData recordsen_US
dc.subjectData setsen_US
dc.subjectForecasting modelsen_US
dc.subjectGauging stationsen_US
dc.subjectNatural ecosystemen_US
dc.subjectNegative influenceen_US
dc.subjectQuantitative valuesen_US
dc.subjectStandardized precipitation indexen_US
dc.subjectStudy areasen_US
dc.subjectTime-scalesen_US
dc.subjectTraining and testingen_US
dc.subjectDroughten_US
dc.subjectEarthquake effectsen_US
dc.subjectFuzzy inferenceen_US
dc.subjectInterchangesen_US
dc.subjectNeural networksen_US
dc.subjectWeather forecastingen_US
dc.subjectFuzzy systemsen_US
dc.subjectaccuracy assessmenten_US
dc.subjectartificial neural networken_US
dc.subjectdroughten_US
dc.subjectforecasting methoden_US
dc.subjectfuzzy mathematicsen_US
dc.subjectobservational methoden_US
dc.subjectrainfallen_US
dc.subjectraingaugeen_US
dc.subjectreliability analysisen_US
dc.subjectAnatoliaen_US
dc.subjectEurasiaen_US
dc.titleAdaptive Neuro-Fuzzy inference system for drought forecastingen_US
dc.typeArticleen_US
dc.identifier.volume23en_US
dc.identifier.issue8en_US
dc.identifier.startpage1143-
dc.identifier.startpage1143en_US
dc.identifier.endpage1154en_US
dc.authorid0000-0002-2279-9138-
dc.authorid0000-0002-8010-9289-
dc.authorid0000-0001-5779-2801-
dc.identifier.doi10.1007/s00477-008-0288-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-71149094442en_US
dc.identifier.wosWOS:000271752100007en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

123
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

110
checked on Nov 14, 2024

Page view(s)

74
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.