Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/6652
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kavaklıoğlu, Kadir. | - |
dc.contributor.author | Ceylan, Halim. | - |
dc.contributor.author | Öztürk, Harun Kemal. | - |
dc.contributor.author | Canyurt, Olcay Ersel. | - |
dc.date.accessioned | 2019-08-16T12:09:23Z | - |
dc.date.available | 2019-08-16T12:09:23Z | - |
dc.date.issued | 2009 | - |
dc.identifier.issn | 0196-8904 | - |
dc.identifier.uri | https://hdl.handle.net/11499/6652 | - |
dc.identifier.uri | https://doi.org/10.1016/j.enconman.2009.06.016 | - |
dc.description.abstract | Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. © 2009 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Energy Conversion and Management | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Electricity consumption | en_US |
dc.subject | Turkey | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Backpropagation training algorithm | en_US |
dc.subject | Economic indicators | en_US |
dc.subject | Gross national product | en_US |
dc.subject | Input-output | en_US |
dc.subject | Linear transfer function | en_US |
dc.subject | Multi layer perceptron | en_US |
dc.subject | Neural network topology | en_US |
dc.subject | Output layer | en_US |
dc.subject | Performance comparison | en_US |
dc.subject | Processing elements | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Backpropagation algorithms | en_US |
dc.subject | Economics | en_US |
dc.subject | Electric load forecasting | en_US |
dc.subject | Electric network topology | en_US |
dc.subject | Electric power utilization | en_US |
dc.subject | Electricity | en_US |
dc.subject | International trade | en_US |
dc.subject | Wireless sensor networks | en_US |
dc.subject | Neural networks | en_US |
dc.title | Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 50 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.startpage | 2719 | - |
dc.identifier.startpage | 2719 | en_US |
dc.identifier.endpage | 2727 | en_US |
dc.authorid | 0000-0002-9050-9219 | - |
dc.authorid | 0000-0002-4616-5439 | - |
dc.authorid | 0000-0003-4831-1118 | - |
dc.authorid | 0000-0003-3690-6608 | - |
dc.identifier.doi | 10.1016/j.enconman.2009.06.016 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-68849117417 | en_US |
dc.identifier.wos | WOS:000270122200004 | en_US |
local.message.claim | 2023-07-15T12:30:44.705+0300|||rp00390|||submit_approve|||dc_contributor_author|||None | * |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
134
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
110
checked on Nov 22, 2024
Page view(s)
62
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.