Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKavaklıoğlu, Kadir.-
dc.contributor.authorCeylan, Halim.-
dc.contributor.authorÖztürk, Harun Kemal.-
dc.contributor.authorCanyurt, Olcay Ersel.-
dc.date.accessioned2019-08-16T12:09:23Z-
dc.date.available2019-08-16T12:09:23Z-
dc.date.issued2009-
dc.identifier.issn0196-8904-
dc.identifier.urihttps://hdl.handle.net/11499/6652-
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2009.06.016-
dc.description.abstractArtificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. © 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectElectricity consumptionen_US
dc.subjectTurkeyen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBackpropagation training algorithmen_US
dc.subjectEconomic indicatorsen_US
dc.subjectGross national producten_US
dc.subjectInput-outputen_US
dc.subjectLinear transfer functionen_US
dc.subjectMulti layer perceptronen_US
dc.subjectNeural network topologyen_US
dc.subjectOutput layeren_US
dc.subjectPerformance comparisonen_US
dc.subjectProcessing elementsen_US
dc.subjectBackpropagationen_US
dc.subjectBackpropagation algorithmsen_US
dc.subjectEconomicsen_US
dc.subjectElectric load forecastingen_US
dc.subjectElectric network topologyen_US
dc.subjectElectric power utilizationen_US
dc.subjectElectricityen_US
dc.subjectInternational tradeen_US
dc.subjectWireless sensor networksen_US
dc.subjectNeural networksen_US
dc.titleModeling and prediction of Turkey's electricity consumption using Artificial Neural Networksen_US
dc.typeArticleen_US
dc.identifier.volume50en_US
dc.identifier.issue11en_US
dc.identifier.startpage2719-
dc.identifier.startpage2719en_US
dc.identifier.endpage2727en_US
dc.authorid0000-0002-9050-9219-
dc.authorid0000-0002-4616-5439-
dc.authorid0000-0003-4831-1118-
dc.authorid0000-0003-3690-6608-
dc.identifier.doi10.1016/j.enconman.2009.06.016-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-68849117417en_US
dc.identifier.wosWOS:000270122200004en_US
local.message.claim2023-07-15T12:30:44.705+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.07. Mechanical Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

134
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

110
checked on Nov 22, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.