Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinecen, Mahmut.-
dc.contributor.authorÇinar, M.-
dc.contributor.authorKaral, Ö.-
dc.contributor.authorEngin, M.-
dc.contributor.authorAteşçi, Y.Z.-
dc.contributor.authorMakinaci, M.-
dc.contributor.authorÇakmak, B.-
dc.date.accessioned2019-08-16T12:09:27Z
dc.date.available2019-08-16T12:09:27Z
dc.date.issued2009-
dc.identifier.isbn9781424436064-
dc.identifier.urihttps://hdl.handle.net/11499/6661-
dc.identifier.urihttps://doi.org/10.1109/BIYOMUT.2009.5130296-
dc.description.abstractProstat cancer is a disease which is the most common and which is also the second deadly in men. When prostat cancer can be diagnosed early, medical surgery operation can be performed and the disease can be treated. In this study, the aim is to design a classifier based expert system for early diagnosis of the organ in constraint phase. The other purpose is to reach informed decision making without biopsy by using following risc factors; PSA (Prostate Spesific Antigen), Free PSA, prostate volume, prostate density, weight, height, BMI (Body Mass Index), smoking and heart-rate. In other words, We want to diagnose cancer in optimum level where decrease the number of patients to whom applied biopsy The other purpose is to investigate a relationship between Body Mass Index and smoking factor and Prostate Cancer. For designed system, different Artificial Neural Networks (ANN) as a classifier were used. Classifiers have the performance Feed Forward with single hidden layer ANN % 84.8 (FF1), Feed forward with two hidden layer ANN %85.8 (FF2), Learning Vector Quantization (LVQ) ANN %71.47 and Radial Basis Function (RBF) ANN % 84. FF2 has the highest permance by %85.8. ©2009 IEEE.en_US
dc.language.isotren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBody mass indexen_US
dc.subjectEarly diagnosisen_US
dc.subjectFeed forwarden_US
dc.subjectHeart-rateen_US
dc.subjectHidden layersen_US
dc.subjectInformed decisionen_US
dc.subjectLearning Vector Quantizationen_US
dc.subjectProstate cancersen_US
dc.subjectProstate volumeen_US
dc.subjectRadial basis functionsen_US
dc.subjectBiomedical engineeringen_US
dc.subjectBiopsyen_US
dc.subjectClassifiersen_US
dc.subjectExpert systemsen_US
dc.subjectLearning systemsen_US
dc.subjectNeural networksen_US
dc.subjectPeelingen_US
dc.subjectRadial basis function networksen_US
dc.subjectVector quantizationen_US
dc.subjectBackpropagationen_US
dc.titleDiagnosis of prostat cancer using artificial neural networksen_US
dc.typeConference Objecten_US
dc.authorid0000-0001-5497-0035-
dc.identifier.doi10.1109/BIYOMUT.2009.5130296-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-70350233472en_US
dc.identifier.wosWOS:000274345400048en_US
dc.ownerPamukkale University-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.grantfulltextnone-
Appears in Collections:Bilgi İşlem Daire Başkanlığı Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.