Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYurdusev, M.A.-
dc.contributor.authorFırat, Mahmut-
dc.contributor.authorMermer, M.-
dc.contributor.authorTuran, M.E.-
dc.date.accessioned2019-08-16T12:10:59Z
dc.date.available2019-08-16T12:10:59Z
dc.date.issued2009-
dc.identifier.issn1741-7589-
dc.identifier.urihttps://hdl.handle.net/11499/6791-
dc.identifier.urihttps://doi.org/10.1680/wama.2009.162.3.179-
dc.description.abstractIn this study, applicability of feed-forward and radial-basis neural networks for monthly water consumption prediction from several socio-economic and climatic factors affecting water use is investigated. A data set including a total of 108 data records is divided into two subsets: training and testing. Firstly, the models based on a single input variable are trained and tested by feed-forward and radial methods and feed-forward and radial performances of the models are compared. Then, the models based on multiple input variables are constructed according to performances of the models based on a single input variable. The performances of feed-forward and radial models in training and testing phases are compared with the observations and the best-fit model is identified. For this purpose, several criteria such as normalised root mean square error, efficiency and correlation coefficient are calculated for all models. Subsequently, the best-fit models are also trained and tested by multiple linear regression for comparison. The results indicated that feed-forward and radial methods can be applied successfully for monthly water consumption prediction. © 2009 Thomas Telford.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the Institution of Civil Engineers: Water Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrology & water resourceen_US
dc.subjectMunicipal & public service engineeringen_US
dc.subjectWater supplyen_US
dc.subjectBest-fit modelsen_US
dc.subjectClimatic factorsen_US
dc.subjectCorrelation coefficienten_US
dc.subjectData recordsen_US
dc.subjectData setsen_US
dc.subjectFeed-Forwarden_US
dc.subjectMultiple inputsen_US
dc.subjectMultiple linear regressionsen_US
dc.subjectNeural neten_US
dc.subjectRoot mean square errorsen_US
dc.subjectSingle input variableen_US
dc.subjectSocio-economicsen_US
dc.subjectTraining and testingen_US
dc.subjectWater consumptionen_US
dc.subjectWater useen_US
dc.subjectBiochemical oxygen demanden_US
dc.subjectCellular radio systemsen_US
dc.subjectHydrologyen_US
dc.subjectNeural networksen_US
dc.subjectStatistical testsen_US
dc.subjectWastewater treatmenten_US
dc.subjectWater supply systemsen_US
dc.subjectWater resourcesen_US
dc.subjectartificial neural networken_US
dc.subjectclimate conditionsen_US
dc.subjectmodelingen_US
dc.subjectperformance assessmenten_US
dc.subjectpredictionen_US
dc.subjectsocioeconomic conditionsen_US
dc.subjecttrainingen_US
dc.subjectwater managementen_US
dc.subjectwater supplyen_US
dc.subjectwater useen_US
dc.titleWater use prediction by radial and feed-forward neural netsen_US
dc.typeArticleen_US
dc.identifier.volume162en_US
dc.identifier.issue3en_US
dc.identifier.startpage179
dc.identifier.startpage179en_US
dc.identifier.endpage188en_US
dc.authorid0000-0002-8010-9289-
dc.identifier.doi10.1680/wama.2009.162.3.179-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-68349151272en_US
dc.identifier.wosWOS:000266548200002en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 21, 2024

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.