Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkyüz-Daşcıoğlu, Ayşegül-
dc.date.accessioned2019-08-16T12:11:14Z-
dc.date.available2019-08-16T12:11:14Z-
dc.date.issued2009-
dc.identifier.issn0749-159X-
dc.identifier.urihttps://hdl.handle.net/11499/6805-
dc.identifier.urihttps://doi.org/10.1002/num.20362-
dc.description.abstractIn this article, a new method is presented for the solution of high-order linear partial differential equations (PDEs) with variable coefficients under the most general conditions. The method is based on the approximation by the truncated double Chebyshev series. PDE and conditions are transformed into the matrix equations, which corresponds to a system of linear algebraic equations with the unknown Chebyshev coefficients, via Chebyshev collocation points. Combining these matrix equations and then solving the system, yields the Chebyshev coefficients of the solution function. Some numerical results are included to demonstrate the validity and applicability of the method. © 2008 Wiley Periodicals, Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofNumerical Methods for Partial Differential Equationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChebyshev collocation methoden_US
dc.subjectDouble Chebyshev seriesen_US
dc.subjectPartial differential equationen_US
dc.titleChebyshev polynomial approximation for high-order partial differential equations with complicated conditionsen_US
dc.typeArticleen_US
dc.identifier.volume25en_US
dc.identifier.issue3en_US
dc.identifier.startpage610-
dc.identifier.startpage610en_US
dc.identifier.endpage621en_US
dc.identifier.doi10.1002/num.20362-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-66049138616en_US
dc.identifier.wosWOS:000265250000006en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

18
checked on Nov 21, 2024

Page view(s)

28
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.